
Machine Learning Theory (CSC 431/531) - Lecture 18

Nishant Mehta

1 Game theory
Online learning is a game between Learner and Nature; simultaneously, optimal strategies for two-
player games can be found via online learning. In this lecture, we will see how von Neumann’s
minimax theorem can be proved using Hedge in the special case when the loss vectors take a
certain parametric form.

A two-player game is defined by a matrix M ∈ [0, 1]m×n. The game is played between a row
player and a column player, where:

• the row players selects a row i of M ;

• the column player selects a column j of M .

The loss of the row player is equal to Mij , and the row player’s goal is to minimize its loss. On the
other hand, the column player seeks to maximize the loss of the row player. If we define the loss of
the column player to be the negation of the loss of the row player, then the column player seeks to
minimize its own loss, and the game is a zero-sum game: the losses of the players sum to zero.

In the above, each player was restricted to a pure strategy, where they deterministically select
a single row (or column) of M . Relaxing this, each player could instead play a mixed strategy; a
mixed strategy randomizes over the rows (or columns) of M . In this more general setting, we talk
about expected losses, where the expectation is taken with respect to the random indices i and j.
For n ∈ N, let ∆n denote the simplex over n outcomes, defined as ∆n :=

{
α ∈ Rn

+ : ∑n
j=1 αj = 1

}
.

If the row player plays mixed strategy p ∈ ∆m and the column player plays mixed strategy q ∈ ∆n,
then the loss of the row player is p⊤Mq.

We have not yet discussed the order in which the players select their strategies. Consider the
case when the row player moves first, selecting some strategy p ∈ ∆m. For any such strategy, if the
column player acts optimally, the row player’s loss is

max
q∈∆n

p⊤Mq.

The optimal strategy for the row player is thus one which obtains loss

min
p∈∆m

max
q∈∆n

p⊤Mq.

If instead the column player moves first and both players act optimally, the row player’s loss is

max
q∈∆n

min
p∈∆m

p⊤Mq.

What is the effect of the order of play? Intuitively, the row player can only be better off if it
moves second since a player that moves second can respond to the other player’s strategy. Indeed,
this is easily verified:
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Define q̄ ∈ ∆n and p ∈ ∆m such that

min
p∈∆m

p⊤Mq̄ = max
q∈∆n

min
p∈∆m

p⊤Mq max
q∈∆n

p⊤Mq = min
p∈∆m

max
q∈∆n

p⊤Mq.

Then

max
q∈∆n

min
p∈∆m

p⊤Mq = min
p∈∆m

p⊤Mq̄ ≤ p⊤Mq̄ ≤ max
q∈∆n

p⊤Mq = min
p∈∆m

max
q∈∆n

p⊤Mq. (1)

However, when both players act optimally, does the row player truly suffer greater loss when
they move first rather than second? The answer is no, and this is the content of von Neumann’s
minimax theorem1:

Theorem 1 (Von Neumann’s Minimax Theorem).

min
p∈∆m

max
q∈∆n

p⊤Mq = max
q∈∆n

min
p∈∆m

p⊤Mq.

When a minimax theorem like Theorem 1 holds, we call the common value on either side of
the equality the value of the game. One additional observation which we often will employ is that,
for sequential play as above, the second player loses no power by restricting to pure strategies.
Therefore, rewriting the minimax theorem, we also have

min
p∈∆m

max
j∈[n]

p⊤Mej = max
q∈∆n

min
i∈[m]

e⊤
i Mq.

2 Repeated games
There are various proofs of von Neumann’s minimax theorem that use what are known as fixed-
point theorems. Instead, we will see an elementary proof based on the existence of a no-regret
learning algorithm for a certain online learning game. On the face of it, that online learning can
be used to prove von Neumann’s minimax theorem might seem strange: the minimax theorem
is a game with only one round, whereas online learning takes place over many rounds. To form
the connection, let us consider the row player as a learning algorithm that wishes to minimize its
cumulative loss in a repeated game. If the learning algorithm (row player) plays p1, . . . , pT and the
column player plays q1, . . . , qT , then the learning algorithm has cumulative loss

T∑
t=1

p⊤
t Mqt.

As we observed in online learning, the learning algorithm cannot guarantee that its cumulative
loss is low in general; however, the learning algorithm can aim to achieve low regret, which we now
define as

T∑
t=1

p⊤
t Mqt − min

p∈∆m

T∑
t=1

p⊤Mqt,

the amount by which the cumulative loss of the learning algorithm exceeds the cumulative loss of
the best constant strategy p in hindsight of q1, . . . , qT .

1Here, we only present von Neumann’s minimax theorem in a simplified form. The full version holds in the more
general situation where p⊤Mq is replaced by f(x, y) for a function f : X × Y → R that is convex in x (for fixed y),
concave in y (for fixed x), and for X and Y compact convex subsets of Rm and Rn respectively.
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The above two-player zero-sum game setting bears strong similarity to the decision-theoretic
online learning (DTOL) setting. In fact, if in DTOL we constrain the loss vectors to take the
parametric form ℓt = Mqt (where M is fixed and qt is chosen by Nature), then the loss in the
DTOL game is the same as the row player’s loss in the two-player zero-sum game. Therefore, the
row player can achieve low regret by using Hedge.

Let us look closely at the plays made by Hedge in our two-player zero-sum game setting. The
strategy p1 is set to some initial value; let us take p1 = 1

m1, the uniform distribution over [m]. In
round t, Hedge plays strategy pt, where pt is defined via

pj,t =
exp

(
−η

∑t−1
s=1 e⊤

j Mqs

)
∑K

i=1 exp
(
−η

∑t−1
s=1 e⊤

i Mqs

) for j = 1, . . . , m; (2)

here, ej is the j th standard basis vector in Rm.
Because the two-player zero-sum game is a special case of DTOL, we can apply Theorem 3 from

the last lecture to obtain the following regret guarantee for the above application of Hedge.

Theorem 2. Let Hedge as in (2) be run with learning rate η =
√

8 log m
T . Then, for any sequence

q1, . . . , qT ∈ ∆n,

T∑
t=1

p⊤
t Mqt ≤ min

i∈[m]

T∑
t=1

e⊤
i Mqt +

√
T log m

2 = min
p∈∆m

T∑
t=1

p⊤Mqt +
√

T log m

2 .

The equality in the above theorem uses the basic fact that for any vector v ∈ Rm, it holds that
minp∈∆m p⊤v = mini∈[m] e⊤

i v.
Recall from (1) that we already know that

max
q∈∆n

min
p∈∆m

p⊤Mq ≤ min
p∈∆m

max
q∈∆n

p⊤Mq. (3)

Using Theorem 2, we can also show the other direction,

min
p∈∆m

max
q∈∆n

p⊤Mq ≤ max
q∈∆n

min
p∈∆m

p⊤Mq, (4)

and thus we will have proved von Neumann’s minimax theorem via Hedge.

Proof of Theorem 1. We already have established (3); it remains to establish (4).
Let p1, . . . , pT be the strategies played by Hedge against q1, . . . , qT , where, for each t ∈ [T ],

the column player selects strategy qt = maxq∈∆n p⊤
t Mqt. Also, define the average strategies p̄ =

1
T

∑T
t=1 pt and q̄ = 1

T

∑T
t=1 qt.
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Let εT =
√

log m
2T . With this setup, it holds that

min
p∈∆m

max
q∈∆n

p⊤Mq ≤ max
q∈∆n

p̄⊤Mq (5)

= max
q∈∆n

1
T

T∑
t=1

p⊤
t Mq

≤ 1
T

T∑
t=1

max
q∈∆n

p⊤
t Mq

= 1
T

T∑
t=1

p⊤
t Mqt,

≤ min
p∈∆m

1
T

T∑
t=1

p⊤Mqt + εT

= min
p∈∆m

p⊤Mq̄ + εT (6)

≤ max
q∈∆n

min
p∈∆m

p⊤Mq + εT . (7)

where the second equality holds by the definition of qt and the line thereafter is from Theorem 2.
Finally, εT vanishes as we take T → ∞, and so (4) does indeed hold.

3 Approximate minimax and maximin optimal strategies
The above algorithmic proof of von Neumann’s minimax theorem goes further than proving what
was required. From the proof we can actually produce an approximately minimax strategy, i.e., a
strategy p̄ for which

v ≤ max
q∈∆n

p̄T Mq ≤ v + ε,

as well as an approximately maximin strategy, i.e., a strategy q̄ for which

v ≥ min
p∈∆m

p⊤Mq̄ ≥ v − ε,

where we recall that v is the value of the game. The first inequality of each of the above displays
is trivial, since the value of the game v satisfies

v = min
p∈∆m

max
q∈∆n

p⊤Mq = max
q∈∆n

min
p∈∆m

p⊤Mq.

Let us verify that the second inequality in each display holds. Indeed, taking p̄ = 1
T

∑T
t=1 pt

and using the sequence of inequalities starting from the right-hand side of (5) until (7), we see that

max
q∈∆n

p̄T Mq ≤ max
q∈∆n

min
p∈∆m

p⊤Mq + εT

= v + εT ,

where εT can be made as small as desired by increasing T .
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Similarly, taking q̄ = 1
T

∑T
t=1 qt and using the sequence of inequalities starting from (6) back-

wards to the left-hand side of (5), it holds that

min
p∈∆m

pT Mq̄ ≥ min
p∈∆m

max
q∈∆n

p⊤Mq − εT

= v − εT .

Thus, (p̄, q̄) are εT -approximate solutions to the game defined by matrix M .
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