
Machine Learning Theory (CSC 431/531) - Lectures 19 and 20

Nishant Mehta

1 Online Convex Optimization and Online Gradient Descent
One of the most fundamental settings in online learning is Online Convex Optimization (OCO).
Let us see how this game is defined. Let the action space be a closed convex set V ⊆ Rd. The game
protocol is given below.

Algorithm 1: Online Convex Optimization
for t = 1→ T do

Learner plays wt ∈ V ⊆ Rd

Nature plays convex loss function ℓt : V → R
Learner suffers loss ℓt(wt)

end

Although the losses ℓt need not be differentiable, we can introduce the main ideas even in the
differentiable case. Therefore, for simplicity, we begin with the assumption that the losses are
differentiable. We consider the more general case of potentially non-differentiable losses later in
this lecture; this case is important as even the absolute loss is not differentiable.

The first algorithm we will study for OCO is called (Projected) Online Gradient Descent (OGD).
If you have seen stochastic gradient descent before, the algorithm should look very familiar. Before
presenting the algorithm, we first introduce the notion of Euclidean projection.

For a nonempty, closed convex subset A ⊆ Rd, the Euclidean projection of y onto A is

ΠA(y) = arg min
x∈A

∥x− y∥2.

Note that A is closed to ensure the minimizer belongs to A, nonempty for obvious reasons, and
convex because this ensures that the minimizer is unique (owing to the strong convexity of the
equivalent objective w 7→ ∥y − w∥22).

Algorithm 2: (Projected) Online Gradient Descent
Select any w1 ∈ V
for t = 1→ T do

Play wt

Observe loss function ℓt and suffer loss ℓt(wt)
wt+1 ← ΠV

(
wt − ηgt

)
for gt = ∇ℓt(wt)

end

Before analyzing OGD, we need a couple of tools from convex analysis. A fundamental property
of convex functions is that they can be lower bounded by their first-order Taylor approximation.
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Theorem 1. Let V ⊆ Rd be convex. Let f : V → R be convex and x ∈ V . If f is differentiable at
x, then

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ for all y ∈ V.

It turns out that a variation of the above result can still be established even if f is not differ-
entiable at x; we will see this extension later in this lecture.

The second tool that we need is that projections can only reduce Euclidean distance.1

Proposition 1. Let V ⊆ Rd be closed and convex. For any w ∈ Rd and u ∈ V ,

∥ΠV (w)− u∥2 ≤ ∥w − u∥2.
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Figure 1: Euclidean projection of w onto a convex set V can only reduce distance to u.

We now have the tools we need to prove a regret bound for OGD.

Theorem 2. Let V ⊂ Rd be a closed convex set with diameter maxx,y∈V ∥x − y∥2 ≤ D. Let
ℓ1, ℓ2, . . . , ℓT be a sequence of convex loss functions ℓt : V → R that are differentiable on V . For
any w1 ∈ V and learning rate η > 0, for any comparator u ∈ V , we have

T∑
t=1

(
ℓt(wt)− ℓt(u)

)
≤ D2

2η
+ η

2

T∑
t=1
∥gt∥22.

Moreover, letting G := maxt∈[T ] ∥gt∥2 ≤ G and setting η = D
G

√
T

, the bound becomes DG
√

T .

Proof. The second statement in the theorem is immediate from the suggested setting of η.
We now prove the first statement. The proof is in four steps. The first step is just like our

analysis of the Exponentially Weighted Average Forecaster for convex losses.

First step: Linearization

Recall that gt = ∇ℓt(wt). Theorem 1 implies that

ℓt(wt)− ℓt(u) ≤ ⟨gt, wt − u⟩. (1)
1For a proof, see the proof of Proposition 1 of http://web.uvic.ca/~nmehta/online_learning_spring2023/

lecture3.pdf.
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Second step: Using recurrence via warm-up analysis

It will be useful to define the intermediate iterate w̃t+1 = wt− ηgt, which is just wt+1 if we did not
project back onto the feasible set V . Now, note that we may rewrite the 2η-weighted linearized
regret as

2η⟨gt, wt − u⟩ = ∥wt − u∥22 − ∥wt − u− ηgt∥22 + η2∥gt∥22
= ∥wt − u∥22 − ∥w̃t+1 − u∥22 + η2∥gt∥22,

so that

⟨gt, wt − u⟩ = 1
2η
∥wt − u∥22 −

1
2η
∥w̃t+1 − u∥22 + η

2∥gt∥22. (2)

Third step: Relating w̃t+1 to actual iterate wt+1

It would be nice if the expression (2) had wt+1 in place of w̃t+1 as we could then sum this expression
over t to get a telescoping series. We can make this swap with the help of Proposition 1 since
wt+1 = Π(w̃t+1) and hence ∥wt+1 − u∥22 ≤ ∥w̃t+1 − u∥22, which gives

⟨gt, wt − u⟩ ≤ 1
2η
∥wt − u∥22 −

1
2η
∥wt+1 − u∥22 + η

2∥gt∥22.

Fourth step: Summing over t and telescoping

Combining this inequality with (1) and summing over t gives that twice the regret is bounded as

2
T∑

t=1

(
ℓt(wt)− ℓt(u)

)
≤

T∑
t=1

(1
η
∥wt − u∥22 −

1
η
∥wt+1 − u∥22 + η∥gt∥22

)

= 1
η
∥w1 − u∥22 −

1
η
∥wT +1 − u∥22 + η

T∑
t=1
∥gt∥22

≤ 1
η
∥w1 − u∥22 + η

T∑
t=1
∥gt∥22

≤ D2

η
+ η

T∑
t=1
∥gt∥22.

This proves the first statement of the theorem.

2 Online Subgradient Descent
Projected Online Gradient Descent relies upon the ability to receive a gradient gt = ∇ℓt(wt) in
each round. However, there are many popular loss functions that fail to be differentiable at some
points in V . For example:

• Taking V = R and yt ∈ R, the absolute loss ℓt(wt) = |wt− yt| is not differentiable at wt = yt;

3



• Taking V = Rd, xt ∈ Rd, and yt ∈ {−1, +1}, the hinge loss ℓt(w) = max {0, 1− yt⟨w, xt⟩} is
not differentiable whenever yt⟨w, xt⟩ = 1.

It turns out that for both these loss functions as well as many others, we can still use OGD after
making a small but important change. Recall that the whole reason we required differentiability of
the losses was so that we could upper bound the regret by its linear approximation via Theorem 1
(see the first step of the proof of Theorem 2).

It would be very nice if, even at a point x ∈ V where a function is not differentiable, we had
available some g ∈ Rd that is like a gradient in the sense that

f(y) ≥ f(x) + ⟨g, y − x⟩ for all y ∈ V.

There indeed is such a concept.

Definition 1 (Subgradient). Let V ⊆ Rd be convex. Let f : V → R be convex. A vector g ∈ Rd

is a subgradient of f at x ∈ V if

f(y) ≥ f(x) + ⟨g, y − x⟩ for all y ∈ V. (3)

In general, there can be a set of subgradients of f at x, and this set is called the subdifferential
of f at x, denoted as ∂f(x). When f is differentiable at x, then there is only one subgradient of
f at x, and this subgradient is the gradient ∇f(x). Conversely, if there is only one subgradient
of f at x, then (i) this subgradient must be ∇f(x) and (ii) f is differentiable at x. Because we
assume that f is real-valued, it turns out that ∂f(x) is always non-empty, which means that f is
subdifferentiable at x.

Let us see an example.

Example 1 (Subdifferential of absolute loss). Setting y = 0, the absolute loss is ℓ(w) = |w|.
Clearly, ℓ is differentiable whenever w ̸= 0. When w < 0, we have ∂ℓ(w) = {−1}, and when w > 0,
we have ∂ℓ(w) = {+1}. Let us investigate what happens when w = 0. The condition (3) becomes

ℓ(w) ≥ ℓ(0) + g · (w − 0) for all w ∈ R,

or

|w| ≥ g · w for all w ∈ R,

which is satisfied if and only if g ∈ [−1, 1]. Therefore, ∂ℓ(0) = [−1, 1]. To recap, we have

∂ℓ(w) =


−1 if w < 0;
[−1, 1] if w = 0;
1 if w > 0.

How should we modify OGD when we are only guaranteed to have subgradients rather than
gradients? Well, we just use any subgradient in each round. This modification of OGD (which is
often still called OGD) is (Projected) Online Subgradient Descent.
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Algorithm 3: (Projected) Online Subgradient Descent
Select any w1 ∈ V
for t = 1→ T do

Play wt

Observe loss function ℓt and suffer loss ℓt(wt)
wt+1 ← ΠV

(
wt − ηgt

)
for any gt ∈ ∂ℓt(wt)

end

Notice that the only step of the proof of Theorem 2 that needs to be modified is the first one,
and as already mentioned above, the step still goes through if we use a subgradient gt ∈ ∂ℓt(wt) in
round t. The following regret bound for Online Subgradient Descent is immediate.

Theorem 3. Let V ⊂ Rd be a closed convex set with diameter maxx,y∈V ∥x − y∥2 ≤ D. Let
ℓ1, ℓ2, . . . , ℓT be a sequence of convex loss functions ℓt : V → R that are subdifferentiable on V . Let
(gt)t≥1 be any sequence of subgradients gt ∈ ∂ℓt(wt). For any w1 ∈ V and any learning rate η > 0,
for any comparator u ∈ V , we have

T∑
t=1

(
ℓt(wt)− ℓt(u)

)
≤ D2

2η
+ η

2

T∑
t=1
∥gt∥22.
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