
Machine Learning Theory (CSC 431/531) - Lecture 2

Nishant Mehta

1 Realizable case and the Mistake Bound Model
We begin our course with classification under the strong assumption of realizability: there exists
some boolean function c ∈ C which determines the labels, so that labeled examples always take
the form (x, c(x)). Here, C is the concept class, a set of boolean functions. Learner knows C but
of course does not know c. The reason for using the notation C rather than F is to allow for the
possibility that Learner predicts according to a different set of hypotheses than those in C.

We first study this setting under the online learning protocol. Consider an arbitrary sequence
of examples, where the length of the sequence also can be arbitrarily large. Since we are in the
realizable case, there exists a perfect hypothesis c ∈ C. Suppose that Learner takes F = C,
eventually plays hypothesis c, and predicts according to it thereafter. Then the total number of
mistakes made by Learner is simply the number of mistakes made by Learner prior to playing
hypothesis c. Thus, it is natural to try to bound the total number of mistakes made by Learner.

Definition 1. An algorithm A learns a class C in the mistake bound model if there there is a
constant M <∞ such that, for any c ∈ C and any sequence of examples (x1, c(x1)), . . . , (xT , c(xT))
of any length T , the total number of mistakes made by A on the sequence is at most M .

Two remarks are in order. First, for many concept classes there is a natural way to define the
concept class for each choice of the dimension d of the input. We then would typically want a
mistake bound M that grows only polynomially in d. Second, we typically also care about efficient
learnability. That is, we would like the runtime of the algorithm to be at most polynomial in d for
each round t.

1.1 Learning monotone conjunctions

Let the input space be {0, 1}d and the label space Y be {0, 1}. Consider the concept class C
consisting of the set of all monotone conjunctions. That is, each element of C is of the form
xi1xi2 · · ·xik

for some k ∈ {0, 1, . . . , d}; if k = 0, then the predicted label is always positive.
There is a simple algorithm for learning monotone conjunctions in the mistake bound model:

1. Initialize hypothesis f to the conjunction f(x) = x1x2 · · ·xd.

2. While there are still examples in the sequence:

Predict the label of the next example using f . If the true label is 1 but the predicted
label was 0, update f by removing from the conjunction all components xj that are zero
in the example.

The idea behind the above algorithm is to begin with the most restrictive hypothesis which
labels everything but the all ones vector as negative. Thus, mistakes can occur only on positive

1

examples. In the event that a mistake occurs on a positive example, we are guaranteed that any
component set to zero in the example cannot be part of the correct conjunction c, and we may thus
remove such components. The algorithm thus only removes terms from the conjunction in f which
are inconsistent with the data observed thus far. Moreover, each mistake leads to the removal of
at least one term from the conjunction, and so there can be at most d mistakes. Therefore, the
above algorithm learns the class of monotone conjunctions in the mistake bound model and makes
at most d mistakes.

2 Halving algorithm
When the concept class is finite, there is a surprisingly simple algorithm that obtains a mistake
bound of log2 |C|. This algorithm is called the Halving algorithm, and it uses two key ideas.

The first idea is that of a version space. The version space is the set of hypotheses that are
consistent with the data observed thus far. Thus, at the start of round t, the version space Vt is
the subset of hypotheses from C which are consistent with (x1, y1), . . . , (xt−1, yt−1).

The second idea is to predict according to a majority vote. For a set of hypotheses F , define
the majority vote based on F as

mvF (x) =
{

1 if |{f ∈ F : f(x) = 1}| ≥ |F|/2;
0 otherwise.

The Halving algorithm simply predicts according to the majority vote with respect to the version
space in every round.

Algorithm 1: Halving Algorithm
V1 ← C
for t = 1→ T do

Observe xt

ft ← mvVt (and predict ŷt = mvVt(xt))
Observe true label yt = c(xt)
Set Vt+1 ← {f ∈ Vt : f(xt) = yt}

end

How many mistakes does this algorithm make? Because it predicts according to the majority
vote, wherever the algorithm makes a mistake it is guaranteed that at least half the hypotheses in
the version space were wrong; thus, the version space is halved on each mistake. Formally, if the
algorithm makes a mistake in round t, it holds that |Vt+1| ≤ |Vt|/2. We initially have V1 = C, and
so if we have made Mt mistakes at the beginning of round t, it follows that |Vt| ≤ |C|/2Mt . Since
there exists a perfect hypothesis c ∈ C, the algorithm can make at most log2 |C| mistakes.

We have just shown that any finite concept class is learnable in the mistake bound model using
the Halving algorithm.

Theorem 1. The Halving algorithm learns any finite concept class C in the mistake bound model
and makes at most log2 |C| mistakes.

Unfortunately, the runtime of the Halving algorithm is linear in |C|, which can be exorbitant.
Why is this bad? In many situations, the size of the concept class |C| can be exponential in the

2

dimension of the data, in which case the runtime of the Halving algorithm is exponential in d (!).
For instance, the class of monotone conjunctions has cardinality 2d. In other cases, such as the
case of linear separators, the concept class can even be infinite.

3 Learning linear separators (with margin) in the mistake bound
model: Perceptron

We next consider the problem of linear classification in the realizable case. Specifically, we will look
at the subclass of linear classifiers known as homogenous linear separators.

Let X = Rd and Y = {−1, +1}. The concept class of homogenous linear separators is defined
as C = {fw : w ∈ Rd}, for hypotheses fw(x) = sgn(⟨w, x⟩). Here, sgn is the sign function, defined1

as the map

sgn(z) =
{

+1 if z ≥ 0;
−1 if z < 0.

The reason these linear separators are called homogenous is because the concept class lacks a
bias term; consequently, the linear separator corresponding to a vector w is the hyperplane normal
to w that passes through the origin, i.e. {x ∈ Rd : ⟨w, x⟩ = 0}. If we also allowed for a bias term
b ∈ R, the class would be upgraded to the set of non-homogenous linear separators (which do not
necessarily pass through the origin); this class also is commonly referred to as halfspaces, and each
hypothesis is of the form x 7→ sgn(⟨w, x⟩+ b).

As before, we make the realizability assumption with respect to concept class C. The sequence
of examples is thus linearly separable, meaning that there exists a vector w∗ ∈ Rd for which

yt = sgn(⟨w∗, xt) for all t ∈ [T].

Since the output of any classifier fw is invariant to scaling of w, without loss of generality we assume
that w∗ has unit ℓ2 norm, i.e., ∥w∗∥2 =

(∑d
j=1(w∗

j)2
)1/2

= 1.
At this stage, we lack the tools to provide a mistake bound for learning the class of homogenous

linear separators. Were the concept class finite, we could use our mistake bound for the Halving
algorithm, but alas, the concept class is not even countable. However, with one additional assump-
tion, we will be able to use an elegant algorithm called the Perceptron algorithm to obtain a finite
mistake bound.

Assuming separability with margin. We further assume that the positive and negative ex-
amples are linearly separable by some positive margin. To make this precise, for any w ∈ Rd, define
the margin with respect w ∈ Rd (and the sequence of examples) to be

γw = min
t∈[T]

yt⟨w, xt⟩
∥w∥2

.

If fw correctly classifies (xt, yt), it is not hard to see (try drawing a diagram) that γw is equal to
the Euclidean distance from xt to the hyperplane {x ∈ Rd : ⟨w, x⟩ = 0}.

The margin γ is then

γ = γw∗ = min
t∈[T]

yt⟨w∗, xt⟩.

We now formalize our assumption of separability with margin:
1The sign function usually maps zero to zero, but we map zero to one so that our classifiers take values in {−1, +1}.

3

Assumption 1. There exists a unit vector w∗ ∈ Rd for which

γ = min
t∈[T]

yt⟨w∗, xt⟩ > 0.

We now consider an efficient algorithm for learning linear separators with a finite number of
mistakes, under the assumption that the data is separable with margin γ. This algorithm is the
Perceptron algorithm.

Algorithm 2: Perceptron
w0 ← 0
m = 0
for t = 1→ T do

Observe xt

Predict ŷt = sgn(⟨wm, xt⟩)
Observe true label yt = c(xt)
if ŷt ̸= yt then

wm+1 ← wm + ytxt

m← m + 1
end

end

Define R := maxt∈[T] ∥xt∥2; this is the radius of the smallest Euclidean ball (centered at the
origin) that contains the data.

Theorem 2. Let (x1, y1), . . . , (xT , yT) be a sequence of examples that is linearly separable with
margin γ > 0. Then on this sequence the Perceptron algorithm makes at most R2

γ2 mistakes.

Remarkably, this mistake bound is independent of the dimension d. Before showing the proof,
let’s build some intuition for Perceptron’s update rule in the case of a mistake. Suppose that
Perceptron makes its mth mistake on a positively labeled example (x, 1), resulting in the update
wm+1 = wm + x. Then ⟨wm+1, x⟩ = ⟨wm, x⟩+ ∥x∥2 > ⟨wm, x⟩, and so the new hypothesis is closer
to classifying x as positive. This same intuition works for mistakes on negative examples as well.

4

Proof. The proof is based on two claims.
The first claim is that the norm of wm is never too big:

∥wm∥ ≤ R
√

m. (1)

Let’s prove this claim. For j ≥ 1, let (x̃j , ỹj) denote the jth example on which Perceptron made a
mistake. It therefore holds that

wm = wm−1 + ỹm x̃m.

Then

∥wm∥2 = ∥wm−1 + ỹm x̃m∥2

= ∥wm−1∥2 + ∥x̃m∥2 + 2ỹm⟨wm−1, x̃m⟩
≤ ∥wm−1∥2 + R2,

where the inequality follows because ỹm⟨wm−1, x̃m⟩ ≤ 0 since wm−1 made a mistake on (x̃m, ỹm).
Repeating this argument all the way back to w0 = 0 yields the claim.

The second claim is that the inner product ⟨wm, w∗⟩ grows quickly with m:

⟨wm, w∗⟩ ≥ γ ·m. (2)

To see this, observe that

⟨w∗, wm⟩ = ⟨w∗, wm−1 + ỹm x̃m⟩
= ⟨w∗, wm−1⟩+ ỹm⟨w∗, x̃m⟩
≥ ⟨w∗, wm−1⟩+ γ.

Applying this argument recursively yields ⟨w∗, wm⟩ ≥ γ ·m, proving the claim.
Now, the inner product ⟨wm, w∗⟩ grows at most linearly in ∥wm∥ (from the Cauchy-Schwarz

inequality), which itself grows no faster than the square root of m (from the first claim). Conse-
quently, ⟨wm, w∗⟩ = O(

√
m). On the other hand, this inner product also grows at least linearly in

m (from the second claim), and so it must be the case that m is bounded as otherwise we would
arrive at a contradiction. Indeed, applying Cauchy-Schwarz to (2) and using (1) yields

γ ·m
(2)
≤ ⟨w∗, wm⟩ ≤ ∥w∗∥ · ∥wm∥ = ∥wm∥

(1)
≤ R
√

m,

and so m ≤ R2

γ2 .

5

	Realizable case and the Mistake Bound Model
	Learning monotone conjunctions

	Halving algorithm
	Learning linear separators (with margin) in the mistake bound model: Perceptron

