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1 The non-stochastic multi-armed bandit problem
Thus far, we have looked at online learning games of full information. In a full information setting,
at the end of each round Learner gets to observe the loss of any action it could have taken. We
now switch to games of partial information. Many such games have been studied, and the specific
one we will cover is the class of multi-armed bandit problems. In the non-stochastic multi-armed
bandit problem, also called the adversarial multi-armed bandit problem, in each of a sequence of
rounds:

1. Learner pulls one arm It from a set of K arms, possibly by randomizing according to a
distribution pt ∈ ∆K .

2. Nature plays a loss vector ℓt ∈ [0, 1]K which assigns loss ℓj,t to each arm j ∈ [K].

3. Learner suffers loss ℓIt,t and observes only this loss.

If Nature is an adaptive adversary, then it can play ℓt with knowledge of Learner’s realizations
I1, I2, . . . , It−1 as well as the distribution pt.

The above problem is equivalent to decision-theoretic online learning if (a) Learner ultimately
must play a single expert in each round and (b) Learner’s feedback is limited to bandit feedback,
i.e., Learner only observes the loss of the expert it plays.

Using the above notation, Learner’s regret is

RT =
T∑

t=1
ℓIt,t − min

j∈[K]

T∑
t=1

ℓj,t.

It turns out that any learning algorithm that obtains low regret must necessarily randomize,
even if Nature is only oblivious, and so for any successful algorithm for this setting, It will be a
random variable. To see how a deterministic strategy can fail to obtain low regret, we consider a
simple example.

1.1 The need for randomization

Let K = 2, and suppose that the learning algorithm is deterministic, so that conditional on
ℓ1, . . . , ℓt−1, the learning algorithm always plays a fixed action It. Then in round t, Nature sets the
loss vector as follows:

ℓt =
{

(1, 0) if It = 1
(0, 1) if It = 2.

(1)
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Then, on the one hand, we have
T∑

t=1
ℓIt,t = T,

while on the other hand, we have
T∑

t=1

2∑
j=1

ℓj,t = T =⇒ min
j=1,2

T∑
t=1

ℓj,t ≤ T

2 ,

and so the regret exhibits the hopelessly linear growth T
2 .

Moreover, Nature is oblivious since it can simulate the deterministic learning algorithm to
identify a sequence of losses satisfying (1) for all t ∈ [T ].

1.2 Expected regret and pseudo-regret

Because the learning algorithm must (and Nature may) randomize, our interest will be in studying
regret bounds that hold in expectation. It is also possible to develop bounds that hold with high
probability, and such bounds are important to have in practice; for simplicity, we forego an analysis
that gives high probability guarantees.

The expected regret is

E[RT ] = E
[

T∑
t=1

ℓIt,t − min
j∈[K]

T∑
t=1

ℓj,t

]
.

A related notion of regret is known as the pseudo-regret, defined as

R̄T = E
[

T∑
t=1

ℓIt,t

]
− min

j∈[K]
E
[

T∑
t=1

ℓj,t

]
.

In this first study of the non-stochastic setting, our focus will be on obtaining bounds on the
pseudo-regret rather than the expected regret, because:

1. It is simpler to upper bound the pseudo-regret;

2. If Nature is oblivious, an upper bound on the worst-case pseudo-regret is also an upper bound
on the worst-case expected regret.

The first observation is true because

R̄T ≤ E[RT ], (2)

which follows from the rewrite

max
j∈[K]

E
[

T∑
t=1

ℓIt,t −
T∑

t=1
ℓj,t

]
≤ E

[
max
j∈[K]

{
T∑

t=1
ℓIt,t −

T∑
t=1

ℓj,t

}]
, (3)

An upper bound on the expected regret is thus also an upper bound on the pseudo-regret.
Let us see why the second observation is true. First, suppose that Nature is deterministic (and

oblivious); this is a special case of an oblivious adversary. The pseudo-regret then reduces to

R̄T = E
[

T∑
t=1

ℓIt,t

]
− min

j∈[K]

T∑
t=1

ℓj,t = E
[

T∑
t=1

ℓIt,t − min
j∈[K]

T∑
t=1

ℓj,t

]
= E[RT ], (4)
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which is just the expected regret. Thus, in the special case of deterministic (oblivious) adversaries,
the pseudo-regret is equal to the expected regret. Next, suppose that Nature is oblivious but might
also randomize. Let B denote the randomization of Nature. Then, since Nature is oblivious,

E [RT ] = EB [E [RT | B]] .

Next, observe that since the learning algorithm is fixed, it holds that

EB [E [RT | B]] ≤ sup
ℓ1,...,ℓT

E [RT ] ;

we thus see that the expected reget under an oblivious adversary is upper bounded by the worst-
case expected regret under a deterministic (oblivious) adversary; also, the inequality becomes an
equality if we instead consider the worst-case expected regret under an oblivious adversary.

Combining this fact with (4), we have

sup
oblivious

E [RT ] = sup
deterministic

E [RT ] = sup
deterministic

R̄T ; (5)

the first supremum is taken over all oblivious adversaries, while the other supremums are taken
over all deterministic oblivious adversaries.

Thus, in order to upper bound the worst-case expected regret under a oblivious adversary, it
suffices to upper bound the worst-case pseudo-regret under a deterministic oblivious adversary.

2 EXP3
We will now study an algorithm called EXP3; this algorithm obtains low pseudo-regret (and hence
low expected regret against an oblivious adversary). The idea of EXP3 is to try to run Hedge, but
this is not actually possible since Learner only observes the loss of the arm it pulls in each round.
EXP3 instead maintains importance-weighted loss estimates of the losses based on the information
it observes, and it runs Hedge on these loss estimates instead.

Let us first look at how EXP3 forms its loss estimates. Similar to Hedge and the exponentially
weighted average forecaster, in each round EXP3 maintains a distribution over actions. In round t,
EXP3 pulls an arm It drawn from a distribution pt. For each arm i ∈ [K], it then uses the following
importance-weighted loss estimate of ℓi,t:

ℓ̃i,t = ℓi,t

pi,t
· 1 [It = i] .

The reason for this choice of loss estimate is that ℓ̃i,t is an unbiased estimator of ℓi,t, since

EIt∼pt

[
ℓ̃i,t

]
=

K∑
j=1

pj,t
ℓi,t

pi,t
· 1 [j = i] = ℓi,t. (6)

Let L̃i,t =
∑t

s=1 ℓ̃i,s denote the cumulative importance-weighted loss of arm i. The full algorithm
is shown below.
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Algorithm 1: EXP3
Input: η > 0
Set pj,1 = 1

K for j = 1, . . . , K
for t = 1 → T do

Draw arm It according to probability distribution pt

Pull arm It and observe loss ℓIt,t

For i ∈ [K], compute loss estimate ℓ̃i,t = ℓi,t

pi,t
· 1 [It = i]

For i ∈ [K], set pi,t+1 = e−ηL̃i,t∑K
j=1 e−ηL̃j,t

end

The next result implies an upper bound on the pseudo-regret of EXP3. The result is most
useful for oblivious adversaries (although technically it also holds for non-oblivious adversaries).

Theorem 1. For any η > 0 and any arm i ∈ [K], EXP3’s expected regret against arm i is bounded
as

E
[
L̂T − Li,t

]
≤ log K

η
+ TKη

2 .

In particular, the choice η =
√

2 log K
KT gives the bound

√
2TK log K.

Note that since we the upper bound holds for all i ∈ [K], it also holds when taking the maximum
over i ∈ [K] (which is the pseudo-regret).

We will use the following lemma to prove Theorem 1.

Lemma 1. Let X be a nonnegative random variable. Then

log E
[
e−X

]
+ E[X] ≤ E

[
X2

2

]

Proof. We first use the inequality log x ≤ x − 1, which gives

log E
[
e−X

]
+ E[X] ≤ E

[
e−X − 1 + X

]
. (7)

Next, we use the following inequality1:

e−x − 1 + x ≤ x2

2 for x ≥ 0. (8)

Applying (8), the right-hand side of (7) is at most E
[

X2

2

]
.

1To see why (8) holds, observe that

e−x − 1 + x − x2

2 = −x3

3! + x4

4! − x5

5! + . . . .

The right-hand side is zero for x = 0. It is enough to verify that the first derivative is nonpositive for all x ≥ 0. For
this, observe that the first derivative also is zero for x = 0, and so it is enough to verify that the second derivative is
nonpositive for all x ≥ 0. For this, observe that the third derivative is equal to −e−x, which is of course nonpositive
for all x ≥ 0. Thus, going backwards, all of the required conditions are satisfied, and (8) indeed holds.
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Proof (of Theorem 1). Consider an arbitrary arm i ∈ [K]. For any t ∈ [T ], let

m̃t := −1
η

log Ej∼pt

[
e−ηℓ̃j,t

]
be the mix loss based on the loss estimates, and define M̃t :=

∑t
s=1 m̃s. Just like our analysis of

the Exponentially Weighted Average (EWA) Forecaster, we use the decomposition

T∑
t=1

⟨ℓ̃t, pt⟩ −
T∑

t=1
ℓ̃i,t =

(
T∑

t=1
⟨ℓ̃t, pt⟩ − M̃T

)
+
(

M̃T −
T∑

t=1
ℓ̃i,t

)
. (9)

The idea of the proof is to show that the expectation of the left-hand side is equal to the
pseudo-regret against arm i and to then bound the expectation of the right-hand side. We do these
steps in sequence. For any t ∈ [T ], let Ft−1 be the history formed by the first t − 1 rounds. From
the law of total expectation and the unbiased property of the importance-weighted loss estimators
respectively, we have

E
[

T∑
t=1

⟨ℓ̃t, pt⟩ −
T∑

t=1
ℓ̃i,t

]
= E

[
T∑

t=1

〈
E
[
ℓ̃t | Ft−1

]
, pt

〉
−

T∑
t=1

E
[
ℓ̃i,t | Ft−1

]]

= E
[

T∑
t=1

⟨ℓt, pt⟩ −
T∑

t=1
ℓi,t

]
= E

[
L̂T − Li,T

]

We now control the right-hand side of (9), beginning with the second term. Recall that Lemma
2 of Lecture 15 showed that for the EWA Forecaster (which includes Hedge as a special case), the
cumulative mix loss is not much larger than the cumulative loss of any expert. That lemma did
not require losses to be in the range [0, 1], so the same argument works even when we have loss
estimates in place of the actual losses. Therefore,

M̃T −
T∑

t=1
ℓ̃i,t ≤ log K

η
. (10)

It remains to upper bound the first term on the right-hand side of (9), i.e.,
∑T

t=1⟨ℓ̃t, pt⟩ − M̃T .
We cannot use Hoeffding’s Lemma as we did with the EWA Forecaster because that lemma requires
control on the range of the losses, whereas here we use loss estimates whose range can be very large.
So, we proceed a different way. We will bound ⟨ℓ̃t, pt⟩− m̃t for a fixed round t. To this end, observe
that

⟨ℓ̃t, pt⟩ − m̃t = 1
η

(
log Ej∼pt

[
e−ηℓ̃j,t

]
+ Ej∼pt

[
ηℓ̃j,t

])
.

Therefore, we can apply Lemma 1 with X = ηℓ̃j,t to get

⟨ℓ̃t, pt⟩ − m̃t ≤ 1
η

Ej∼pt


(
ηℓ̃j,t

)2

2

 = η

2 Ej∼pt

[(
ℓ̃j,t

)2
]

(11)
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Applying (10) and (11) in (9) gives

T∑
t=1

⟨ℓ̃t, pt⟩ −
T∑

t=1
ℓ̃i,t ≤ log K

η
+ η

2

T∑
t=1

Ej∼pt

[
(ℓ̃j,t)2

]

= log K

η
+ η

2

T∑
t=1

K∑
j=1

pj,t

(
ℓj,t 1 [It = j]

pj,t

)2

= log K

η
+ η

2

T∑
t=1

K∑
j=1

ℓ2
j,t 1 [It = j]

pj,t

≤ log K

η
+ η

2

T∑
t=1

K∑
j=1

1 [It = j]
pj,t

.

Now, taking the expectation on both sides of the above inequality and noting the equality
E
[

1[It=j]
pj,t

]
= 1, we have

E
[
L̂T − Li,T

]
= E

[
T∑

t=1
⟨ℓ̃t, pt⟩ −

T∑
t=1

ℓ̃j,t

]

≤ log K

η
+ E

η

2

T∑
t=1

K∑
j=1

1 [It = j]
pj,t


≤ log K

η
+ TKη

2 .

Taking the choice η =
√

2 log K
T K gives the regret bound

√
T K log K

2 .
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