
Machine Learning Theory (CSC 431/531) - Lecture 3

Nishant Mehta

1 Towards Statistical Learning: the Consistency Model
We now begin our study of the first major component of this course: statistical learning theory. Our
starting point will be classification in the statistical learning setting (recall the protocol introduced
in Lecture 1) under the realizability assumption.

Let’s review the statistical learning protocol in the realizable case. Let C ⊆ 2X be a fixed and
known concept class.

1. Nature selects a distribution P over the input space X and selects a concept c ∈ C.

2. Learner is given a training set of n labeled examples (x1, y1), . . . , (xn, yn), where each xj is
drawn i.i.d. from P and each yj = c(xj).

3. Learner wishes to select a hypothesis f in some hypothesis space F which obtains low risk
with respect to 0-1 loss, i.e., for which the misclassification probability PrX∼P (f(X) ̸= c(X))
is small.

A natural approach for Learner is to take F = C and select any hypothesis f ∈ F which is
consistent with the training sample.

Definition 1. A hypothesis f : X → Y is consistent with training sample (x1, y1), . . . , (xn, yn) if
f(xj) = yj for all j ∈ [n].

If we are lucky and have a training sample that is representative of the actual distribution, then
it will be the case that the empirical risk

1
n

n∑
j=1

1[f(xj) ̸= c(xj)]

is close to the true risk

R(f) = EX∼P

[
1[f(X) ̸= c(X)]

]
= PrX∼P

(
f(X) ̸= c(X)

)
.

In this lucky event, minimizing the empirical risk is a good proxy for minimizing the actual risk.
For now, we will consider the algorithmic question of how to find a hypothesis consistent with

the training sample. Once that is settled, at least in a few scenarios, we will directly address the
question of how much data we need before the empirical risk is “close enough” to the true risk;
answering this question is critical if we wish to justify algorithms that attempt to minimize the
empirical risk.

Definition 2. An algorithm A learns a class C in the consistency model if, for any training set
(x1, y1), . . . , (xn, yn), the algorithm outputs a concept f ∈ C consistent with the training set if one
exists and otherwise outputs False (indicating that no such concept exists in C).

1



As before, our primary interest is in efficient algorithms, whose runtime is polynomial in the number
of examples n and the size of an example (typically the dimension of the data, d). Note that unlike
the mistake bound model, our algorithm must also handle the situation where the examples were
not labeled according to any concept c ∈ C.

2 Examples of learning in the consistency model

2.1 Monotone conjunctions

When C is the class of monotone conjunctions over {0, 1}d, we can reuse the key idea for learning
monotone conjunctions in the mistake bound model:

Start with the conjunction of all variables x1 ∧ x2 ∧ . . . ∧ xd, and kick out any feature
which takes the value of 0 in some positive example. If this conjunction is consistent
with the negative examples, output the conjunction; otherwise, output False.

Analysis. The resulting hypothesis, call it f̂ , only kicks out features when necessary to be con-
sistent with the positive examples, and thus subject to this constraint, it tries to label as many
examples as negative as possible. Therefore, if there is a monotone conjunction consistent with the
data, then f̂ can never make a mistake on a negative example and hence is consistent with the
data. If f̂ does make a mistake on a negative example, then no monotone conjunction is consistent
with the data, and so the algorithm should indeed output False.

Efficiency. The above algorithm is efficient; its runtime is O(dn), since it only needs to inspect
each feature of each example at most once.

Extensions. The class of monotone disjunctions, concepts of the form xj1 ∨ xj2 ∨ . . . ∨ xjk
for

k ∈ {0, 1, . . . , d}, can be learned in an identical way if we first transform the data as follows:

• Flip the sign of each label.

• For each example x, replace each feature xj by its negation x̄j = 1 − xj .

Learning monotone disjunctions over the original data is now equivalent to learning monotone
conjunctions on the transformed data.

We leave as a simple exercise the task of efficiently learning (not necessarily monotone) con-
junctions over {0, 1}d in the consistency model: a conjunction is of the form (e.g.) x̄2 ∧ x4 ∧ x7.
Another good exercise is to design an algorithm for efficiently learning k-CNF, the class of for-
mulas in conjunctive normal form for which each clause has at most k terms. For instance,
x1 ∧(x̄1 ∨ x2) ∧(x3 ∨ x̄4) is an example of a concept in 2-CNF. A related exercise is the task of
learning k-DNF, the class of formulas in disjunctive normal form for which each clause has at most
k terms. For instance, x̄1 ∨(x1 ∧ x̄2) ∨(x̄3 ∧ x4) is an example of a concept in 2-DNF.

2.2 Linear separators

Suppose that we are learning homogeneous linear separators in the realizable case, where there
exists a hypothesis w∗ obtaining margin γ > 0 over the training sample (x1, y1), . . . , (xn, yn). We
later will see a simple way to find a w consistent with the data using the Perceptron algorithm.
However, rather than using Perceptron, it is possible to try and find such a w directly.

2



Without loss of generality, assume that w∗ has unit norm. Since w∗ obtains margin γ over the
training sample, it holds that

yj⟨w∗, xj⟩ ≥ γ for all j ∈ [n].

Therefore, taking w̃ = w∗

γ , we have

yj⟨w̃, xj⟩ ≥ 1 for all j ∈ [n].

Clearly, this vector w̃ induces a linear separator consistent with the data, and so we need only
find some w ∈ Rd which satisfies the linear constraints

yj⟨w, xj⟩ ≥ 1 for all j ∈ [n].

We can find such a vector using linear programming. A linear program is an optimization
problem which has a linear objective function and linear constraints. In our case, we do not have
an objective function, and so we simply set the parameter for the objective function to equal the
zero vector 0. Framed as a linear program, our task becomes

minimize
w∈Rd

⟨0, w⟩

subject to ⟨w, yj xj⟩ ≥ 1, j = 1, . . . , n.

There is a rich theory for solving linear programs, which includes efficient (polynomial time) algo-
rithms. Thus, it is possible to learn linear separators efficiently in the consistency model.

References
Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computational learning theory.

MIT press, 1994.

3


	Towards Statistical Learning: the Consistency Model
	Examples of learning in the consistency model
	Monotone conjunctions
	Linear separators


