
Machine Learning Theory (CSC 431/531) - Lecture 5

Nishant Mehta

1 Agnostic Learning
From now on, we will study the agnostic learning setting, wherein the labels themselves can be
random conditional on the input. Thus, the distribution P is now a joint distribution over X × Y.
In PAC learning, it made sense to analyze the rate of convergence of a learning algorithm’s risk
R(f̂) to zero as the sample size n increases; however, in the agnostic setting it may no longer be the
case that there exists a hypothesis from the set F̄ of all possible hypotheses that obtains zero risk.1
A more sensible goal is to hope for a learning algorithm for which the excess risk with respect to
the best possible hypothesis decays to zero as n → ∞. Let’s therefore study the behavior of this
best possible hypothesis.

1.1 Bayes classifier

Definition 1. The Bayes risk R∗ is defined as the minimum risk among all possible hypotheses:2

R∗ = inf
f∈F̄

R(f).

A Bayes optimal classifier, or Bayes classifier, is a hypothesis f which obtains the Bayes risk:

R(f) = R∗.

What form does a Bayes classifier take? For an input x ∈ X , it is easy to see that the conditional
risk E

[
1[ŷ ̸= Y ] | X = x

]
= Pr(ŷ ̸= Y | X = x) is minimized by predicting

ŷ ∈ arg max
y∈{0,1}

Pr(Y = y | X = x).

Hence, by arbitrarily breaking ties in favor of the positive class, we take the Bayes classifier to be

fBayes(x) = 1
[
Pr(Y = 1 | X = x) ≥ 1/2

]
.

1.2 Minimizing excess risk with respect to fBayes is hopeless

Now that we have defined the excess risk with respect to fBayes, a natural question arises:

For a fixed input space X , is there a learning algorithm A for which, no matter the
distribution P , for any ε > 0 and δ ∈ (0, 1), there is a sample size n(ε, δ) (not depending
on P ) such that R(f̂) − R∗ ≤ ε with probability at least 1 − δ?

1Technically, whenever I refer to the set of all possible hypotheses, I actually mean the set of all measurable
hypotheses. If you do not know what the term “measurable” means, do not worry about this footnote, for now.

2If you do not know what inf means: if you are an undergrad, inf stands for “infimum”, and you may think of it
roughly as “minimum”. If you are a graduate student, you should familiarize yourself with infimums and supremums.
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Such a learning algorithm would be a universal learner, as it performs well against any distribution
P . Unfortunately, this is not possible, as shown by the following “No-Free-Lunch” result:

In agnostic learning, for any learning algorithm and sample size n, there is a distribution
P ∈ ∆(X ×Y) with deterministic labels under which, with constant positive probability,
R(f̂) is lower bounded by a positive constant.

Remarks:

• Since the label Y is deterministic given X, we have P (Y = 1 | X) ∈ {0, 1}; consequently,
there is a perfect labeling function, and hence R(f̂) − R∗ = R(f̂).

A proof of this No-Free-Lunch theorem can be found in Section 5.1 of the Understanding
Machine Learning book of Shalev-Shwartz and Ben-David (2014).

1.3 The Agnostic Model

In light of the impossibility result of competing with hypothesis fBayes, we will instead compete
against the best hypothesis within our hypothesis space F .

Let f∗ be a hypothesis in F that minimizes the risk (under distribution P ), so that

R(f∗) = inf
f∈F

R(f).

Definition 2. We say that F is agnostically learnable if there exists an algorithm A and a function
n : (0, 1)2 → N which, for any distribution P over X × Y and for all ε ∈ (0, 1) and δ ∈ (0, 1), satisfy
the following guarantee:

If A is given access to n(ε, δ) labeled examples drawn i.i.d. from P , then with probability at
least 1 − δ, A outputs a hypothesis f̂ with excess risk R(f) − R(f∗) ≤ ε.

We say that F is efficiently agnostically learnable if, in addition, A runs in time polynomial in
1
ε and 1

δ .

As with PAC learning, we can also require A to output hypotheses in F (so that A is proper).
If F is agnostically learnable by such an algorithm, then F is properly agnostically learnable.

1.4 Error decompositions

Decomposition of excess risk into approximation error and estimation error

Consider a learning algorithm A which, given a training sample S, outputs some hypothesis f̂ ∈ F .
The excess risk of f̂ with respect to the Bayes classifier can be decomposed as

R(f̂) − R∗ =
(
R(f∗) − R∗)︸ ︷︷ ︸

approximation error

+
(
R(f̂) − R(f∗)

)︸ ︷︷ ︸
estimation error

. (1)

The first term in the decomposition is the approximation error : it is a measure of how well the
class F can approximate the Bayes classifier in terms of risk; if fBayes ∈ F , then the approximation
error is zero. Bounding the approximation error requires knowledge of R∗ or some partial informa-
tion about fBayes, and in settings where little or no distributional assumptions are made, it is thus
very difficult if not impossible to control the approximation error. Note, however, that if we begin
making certain assumptions about P and if we allow F to grow with n (so that, given a sample
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of size n, Learner outputs a hypothesis in Fn), then it is possible to obtain rates of convergence of
the approximation error to zero.

The second term in the decomposition is the estimation error. Unlike the approximation error,
provided that F is not “too large” it is possible to obtain good bounds on the estimation error in
a distribution-free way, i.e. without having any information about the underlying distribution P .
How does the estimation error typically depend on F? As we will soon see, for learning algorithms
that return hypotheses that have low empirical risk, the estimation error increases with |F|. This
accords with our intuition that, information-theoretically, we need more bits of information to
“whittle down” F to the risk minimizer (or set of risk minimizers) as F increases in size.

The decomposition (1) into approximation error and estimation error highlights the familiar
trade-off between model expressivity and generalization. As we increase the size (complexity) of
our model F , the approximation error decreases since the model can express more patterns; si-
multaneously, however, it becomes more likely that we will overfit and hence fail to generalize
well.

Our primary focus will be controlling the estimation error. Controlling the estimation error
rather than the excess risk with respect to fBayes has various motivations, including

• If we are “lucky” and the approximation error is zero or sufficiently small, a bound on the
estimation error also provides a good bound on R(f̂) − R∗.

• Suppose that we are in a nonparametric setup where, at sample size n, Learner employs
hypothesis space Fn. Under mild assumptions about the true distribution, we may be able
to control the approximation error as a function of n. It then is also useful to control the
estimation error for each Fn, as we then can determine how quickly the complexity of the
model should increase with the sample size.

Oracle inequality approach. A bound on the estimation error of a learning algorithm A that
outputs hypothesis f̂ is equivalent to a bound of the form:

R(f̂) ≤ R(f∗) + bound(F , n). (2)

In statistics and machine learning, a bound of this form is called an oracle inequality. The name
stems from our comparing the performance of f̂ to that of an omniscient oracle which plays f∗, the
best hypothesis in F , because it knows the underlying distribution P .

It is natural to seek an oracle inequality for a learning algorithm, as we then know how far off
the risk we obtain is from the best possible risk obtainable via F . However, to the practitioner,
oracle inequalities are not immediately useful: R(f∗) is an unknown quantity, so, while the bound
may be correct, a practitioner has no observable upper bound on R(f̂) (!).

Deviations approach: Decomposition of risk into empirical risk and deviation

The error decomposition below, this time of the risk of R(f̂) itself, can lead to an observable
bound. For any hypothesis f and training sample S = ((X1, Y1), . . . , (Xn, Yn)), let the quantity
R̂S(f) = 1

n

∑n
j=1 1[f(Xj) ̸= Yj ] denote the empirical risk of f on S. Then

R(f̂) = R̂S(f̂) +
(
R(f̂) − R̂S(f̂)

)︸ ︷︷ ︸
deviation

. (3)
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Let’s see how we can use (3) to get an upper bound on the risk of f̂ . Suppose that we have a
bound of the form: ∣∣∣R(f) − R̂S(f)

∣∣∣ ≤ ε for all f ∈ F . (4)

This bound is known as a uniform deviation bound, since it bounds the deviation of R̂S(f) from
its mean E

[
R̂S(f)

]
= R(f), uniformly over F .

From (4), the bound holds for f̂ in particular, and so we immediately obtain the risk bound

R(f̂) ≤ R̂S(f̂) + ε. (5)

Note that this upper bound is observable, since the empirical risk of f̂ can be observed.
Moreover, as we will see below, a bound of the form (4) can, with just a few short steps, lead

to an oracle inequality.

2 A first excess risk bound for finite classes
Let’s derive a first excess risk bound for agnostically learning a finite class F . We will obtain a
bound by way of a concentration inequality known as Hoeffding’s inequality, proved by Wassily
Hoeffding in 1963.

Theorem 1. Let Z1, . . . , Zn be independent random variables such that Zj ∈ [aj , bj ] for j ∈ [n].
Let Z̄ = 1

n

∑n
j=1 Zj. Then for any ε > 0:

Pr
(
Z̄ − E[Z̄] ≥ ε

)
≤ exp

(
−2n2ε2∑n

j=1(bj − aj)2

)
.

Before establishing an excess risk bound, we will first establish a uniform convergence result:
the empirical risk converges to the actual risk uniformly over F . It becomes tiresome to carry
around the subscript S for the empirical risk, so we use the abbreviation R̂(f) := R̂S(f).

Theorem 2. Let F be a finite set of hypotheses and let P be a fixed distribution over X × Y. For
any ε > 0 and any δ ∈ (0, 1), if (X1, Y1), . . . , (Xn, Yn) are drawn i.i.d. from P with

n ≥
log |F| + log 2

δ

2ε2 ,

then with probability at least 1 − δ∣∣∣R(f) − R̂(f)
∣∣∣ ≤ ε for all f ∈ F .

Proof. Fix some f ∈ F and consider the probability that

R̂(f) − R(f) > ε.

This event may be rewritten as

1
n

n∑
j=1

1
[
f(Xj) ̸= Yj

]
− E

 1
n

n∑
j=1

1[f(Xj) ̸= Yj ]

 > ε,
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and so we may apply Hoeffding’s inequality twice, once with Zj = − 1[f(Xj) ̸= Yj ], aj = 0, and
bj = 1 for j ∈ [n], yielding

Pr
(
R̂(f) − R(f) > ε

)
≤ e−2nε2

,

and once with Zj = 1[f(Xj) ̸= Yj ], aj = −1, and bj = 0 for j ∈ [n], yielding

Pr
(
R(f) − R̂(f) > ε

)
≤ e−2nε2

.

Hence,

Pr
(∣∣∣R(f) − R̂(f)

∣∣∣ > ε
)

≤ 2e−2nε2
.

Next, applying the union bound, we have

Pr
(
∃f ∈ F :

∣∣∣R(f) − R̂(f)
∣∣∣ > ε

)
≤
∑
f∈F

Pr
(∣∣∣R(f) − R̂(f)

∣∣∣ > ε
)

≤ 2|F|e−2nε2
.

The result follows by setting the RHS to δ and solving for n.

We now prove that any finite class can be agnostically learned using empirical risk minimization
(ERM) over F , a method which outputs the hypothesis in F that minimizes the empirical risk.
Theorem 3. Let F be a finite set of hypotheses, let P be a fixed distribution over X × Y, and
take A to be ERM over F For any ε > 0 and any δ ∈ (0, 1), if A is run on a training sample
(X1, Y1), . . . , (Xn, Yn) drawn i.i.d. from P with

n ≥
2
(
log |F| + log 2

δ

)
ε2 ,

then with probability at least 1 − δ

R(f̂) ≤ R(f∗) + ε.

Proof. First, observe that

R(f̂) − R(f∗) =
(
R̂(f̂) + (R(f̂) − R̂(f̂))

)
−
(
R̂(f∗) + (R(f∗) − R̂(f∗))

)
=

(
R̂(f̂) − R̂(f∗)

)
+
(
R(f̂) − R̂(f̂)

)
+
(
R̂(f∗) − R(f∗)

)
≤

(
R(f̂) − R̂(f̂)

)
+
(
R̂(f∗) − R(f∗)

)
≤ 2 max

f∈F

∣∣∣R(f) − R̂(f)
∣∣∣ ,

where the first inequality uses the fact that the empirical risk of ERM is no greater than the
empirical risk of f∗. Next, from Theorem 2, with probability at least 1 − δ

max
f∈F

∣∣∣R(f) − R̂(f)
∣∣∣ ≤ ε/2,

and so the result holds.
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