
Machine Learning Theory (CSC 431/531A) - Lecture 6

Nishant Mehta

1 Effective size of a class
So far, we have seen how to obtain a uniform convergence result when F is finite. We will now
“upgrade” this result to the case when F is infinite. It is worth thinking about whether our previous
proof might already yield a useful bound for infinite F . Unfortunately, the answer is no because
the union bound for infinite F leads to an infinite upper bound. As it turns out, the right way to
derive a good uniform convergence bound still relies on a union bound, but applied in a very clever
way. For this, we need the notion of the “effective size” of F .

A key idea we will use is that even though F may be infinite, there are only finitely many
ways to classify a given training sample by picking different hypotheses from F . Let’s make this
concrete. Given a sequence of inputs xn

1 = (x1, . . . , xn), let F|xn
1

be the coordinate projection of F
onto xn

1 . That is,

F|xn
1

:=




f(x1)
f(x2)

...
f(xn)

 : f ∈ F

 .

Since F is a set of classifiers, each of which takes values in {0, 1}, we have that F|xn
1

⊆ {0, 1}n, and
hence |F|xn

1
| ≤ 2n.

Intuitively, even though our hypothesis space F is infinite, when it is viewed through the lens
of the data, there are only finitely many distinct hypotheses.

Example 1 (Threshold functions). Consider learning threshold functions over R, so that we take
X = R and F = {ft : t ∈ R}, where ft(x) = 1[x ≥ t]. Suppose that we have n distinct inputs
x1 < x2 < . . . < xn. Then it is easy to see that there only n + 1 distinct ways that F can classify
this training sample, namely:

t ∈ (−∞, x1) t ∈ (x1, x2) t ∈ (x2, x3) · · · t ∈ (xn−1, xn) t ∈ (xn, ∞).

Thus, in this case, |F|xn
1
| = n + 1, and for any training sample of size n, |F|xn

1
| ≤ n + 1.

2 Growth function
Definition 1. The growth function of F is defined as

ΠF (n) = sup
(x1,...,xn)∈X n

|F|xn
1
|.

The growth function of F evaluated at n is the maximum number of ways a set of n points can be
split using functions from F . Often in the literature, you may also see ΠF (n) called the n th shatter
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coefficient of F . The latter term stems from the notion of “shattering”, a crucial component in
defining the fundamental notion of Vapnik-Chervonenkis dimension (VC dimension); we will study
both shattering and VC dimension in the next lecture.

Example 2 (Intervals). Consider the class of intervals over R. That is, let’s take X = R and
F = {fa,b : −∞ ≤ a ≤ b ≤ ∞} for fa,b(x) = 1[a ≤ x ≤ b]. Similar to the case of threshold functions
over R, in this case ΠF (n) is finite (this is obvious) and also once again strictly less than 2n. We
leave it as an exercise to work out the exact value of ΠF (n).

3 Uniform convergence for infinite classes
We now prove the following fundamental result, originally proved by Vapnik and Chervonenkis in
1971. The result is a uniform convergence result over infinite classes, where the complexity of the
class is paid for via the growth function ΠF (n).

Before presenting the result, we establish some useful notation that appears frequently in the
empirical process theory literature. For any function g from X × Y to R, let P g denote the expec-
tation of g(Z) for Z = (X, Y ) ∼ P . For a training sample Z1, . . . , Zn, the empirical distribution
Pn (with respect to Z1, . . . , Zn) is 1

n

∑n
j=1 δZj (·). Here, for some value z, the delta function δz(z′)

is equal to 1 if z′ = z and 0 otherwise. Let Pn g denote the expectation of g(Z) when Z is drawn
from the empirical distribution Pn . We thus have

P g = EZ∼P [g(Z)] Pn g = 1
n

n∑
j=1

g(Zj).

For any hypothesis f ∈ F , define the loss-composed version of f as gf : (x, y) 7→ 1[f(x) ̸= y].
So, while f is a random variable mapping from X to {0, 1}, the function gf is a random variable
mapping from X × Y to {0, 1}. From F we can generate the corresponding “loss-composed” class
G = {gf : f ∈ F}. Throughout this section, we will use the notation Z = (X, Y ) and Zj = (Xj , Yj).

Theorem 1 (Vapnik and Chervonenkis, 1971). For any probability distribution P and any hypoth-
esis space F ⊂ {0, 1}X , and any ε > 0,

Pr
(

sup
g∈G

|(P − Pn )g| > ε

)
≤ 8ΠF (n)e−nε2/32.

The proof of this result uses two key ideas, both of which are variants of a powerful argument
known as symmetrization.

The first symmetrization is sometimes called “symmetrization by ghost sample”. The idea is to
shift from bounding the uniform deviation of an empirical expectation from the actual expectation
to bounding the uniform deviation between two empirical expectations from independent samples
of the same size. To this end, let Z ′

1, . . . , Z ′
n be an independent copy of Z1, . . . , Zn, so that all 2n

random variables are i.i.d. according to P . We call Z ′
1, . . . , Z ′

n a ghost sample, because this is a
fictional sample that we do not actually have, but which, nevertheless, we will use in our analysis.
Now, similar to Pn , let P ′

n g denote the empirical expectation of a function g : X × Y → R with
respect to the ghost sample, so that

P ′
n g = 1

n

n∑
j=1

g(Z ′
j).

With this notation in place, we establish the first symmetrization lemma.
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Lemma 1. Let Z1, . . . , Zn, Z ′
1, . . . , Z ′

n be i.i.d. random variables distributed according to P . Then
for any ε satisfying nε2 ≥ 2,

Pr
(

sup
g∈G

|(P − Pn )g| > ε

)
≤ 2 Pr

(
sup
g∈G

∣∣(P ′
n − Pn )g

∣∣ > ε/2
)

Intuitively, the reason why we view this lemma as progress is because we now only care about
viewing the function class G through the lens of a double sample (the original sample and the ghost
sample). Thus, it is conceivable that we may be able to use the finiteness of ΠF (2n) if we are clever
enough.

Proof. The proof involves a sequence of lower bounds on the probability in the RHS of the lemma.
Let gn be a function in G for which |(P − Pn )gn| = supg∈G |(P − Pn )g| (if there is no such gn,

minor but tedious modifications allow essentially the same proof to go through). Then

Pr
(

sup
g∈G

∣∣(Pn − P ′
n )g

∣∣ > ε/2
)

≥ Pr
(∣∣(Pn − P ′

n )gn

∣∣ > ε/2
)
. (1)

Next, observe that
[
|(P −Pn )gn| > ε

]
and

[
|(P −P ′

n )gn| < ε
2
]

together imply
[
|(P ′

n −Pn )gn| > ε
2
]
.

Hence, the above is at least

Pr
((

|(P − Pn )gn| > ε
)∧(

|(P − P ′
n )gn| < ε/2

))
= E

[
1[|(P − Pn )gn| > ε] · Pr

(
|(P − P ′

n )gn| < ε/2 | Z1, . . . , Zn
)]

(2)

Now, since gn depends only on Z1, . . . , Zn, we can lower bound the conditional probability above
using Chebyshev’s inequality:

PrZ′
1,...,Z′

n

(
(P − P ′

n )gn ≥ ε/2
)

≤ Var[gn(Z ′
1) | Z1, . . . , Zn]
nε2/4

≤ 1
nε2 ,

where we used the fact that the variance of a Bernoulli random variable can be at most 1/4. Since
we assumed that nε2 ≥ 2, it follows that

Pr
(
|(P − P ′

n )gn| < ε/2 | Z1, . . . , Zn
)

≥ 1
2 .

But this implies that (2) (and hence the LHS of (1)) is lower bounded by

1
2 Pr (|(P − Pn )gn| > ε) .

The second key idea is another application of symmetrization, this time an argument often
called “symmetrization by random signs”. For this argument, we employ a sequence of independent
Rademacher random variables σ1, . . . , σn. A Rademacher random variable σ is one which takes the
values {−1, +1} with equal probability, so Pr(σ = −1) = Pr(σ = 1) = 1

2 .
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Lemma 2. Let Z1, . . . , Zn, Z ′
1, . . . , Z ′

n be i.i.d. random variables and let σ1, . . . , σn be independent
Rademacher random variables. Then for any ε > 0,

Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1

(
g(Z ′

j) − g(Zj)
)∣∣∣∣∣∣ > ε/2

 ≤ 2 Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σjg(Zj)

∣∣∣∣∣∣ > ε/4


Proof. Observe that for any choice of sign variables σ1, . . . , σn ∈ {−1, +1}, the distribution of

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1

(
g(Z ′

j) − g(Zj)
)∣∣∣∣∣∣

is identical to the distribution of

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σj

(
g(Z ′

j) − g(Zj)
)∣∣∣∣∣∣ .

Therefore, letting σ1, . . . , σn be i.i.d. Rademacher random variables, it holds that

Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1

(
g(Z ′

j) − g(Zj)
)∣∣∣∣∣∣ > ε/2


= Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σj

(
g(Z ′

j) − g(Zj)
)∣∣∣∣∣∣ > ε/2


≤ Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σjg(Z ′

j)

∣∣∣∣∣∣ > ε/4

+ Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σjg(Zj)

∣∣∣∣∣∣ > ε/4


= 2 Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σjg(Zj)

∣∣∣∣∣∣ > ε/4



Proof (of Theorem 1). Lemmas 1 and 2 together imply that for nε2 ≥ 2,

Pr
(

sup
g∈G

|(P − Pn )g| > ε

)
≤ 4 Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σjg(Zj)

∣∣∣∣∣∣ > ε/4

 .

Next, observe that

Pr

sup
g∈G

∣∣∣∣∣∣ 1n
n∑

j=1
σjg(Zj)

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn


= Pr

sup
f∈F

∣∣∣∣∣∣ 1n
n∑

j=1
σjgf (Zj)

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn


= Pr

 max
v∈F|xn

1

∣∣∣∣∣∣ 1n
n∑

j=1
σj 1[vj ̸= Yj ]

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn


≤ ΠF (n) max

v∈F|xn
1

Pr

∣∣∣∣∣∣ 1n
n∑

j=1
σj 1[vj ̸= Yj ]

∣∣∣∣∣∣ > ε/4 | Z1, . . . , Zn

 .

4



Finally, note that conditional on (Z1, . . . , Zn), each random variable σj 1[vj ̸= Yj ] is a zero-mean
random variable taking values in [−1, 1]. Applying Hoeffding’s inequality with [aj , bj ] = [−1, 1] for
j ∈ [n], the above probability is at most

2ΠF (n)e−nε2/32.

The final bound follows, even without the condition nε2 ≥ 2, since 8e−nε2/32 > 1 for nε2 < 2.
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