
Machine Learning Theory (CSC 431/531) - Lecture 7

Nishant Mehta

1 The Vapnik-Chervonenkis dimension
Recall that the growth function is defined as

ΠF (n) = sup
(x1,...,xn)∈X n

∣∣∣F|xn
1

∣∣∣ .
Definition 1. We say that a concept class F shatters xn

1 if
∣∣∣F|xn

1

∣∣∣ = 2n.

Suppose that F shatters a set of n inputs. Then no matter their labels, there exists a hypothesis
f ∈ F which matches the labels; the empirical risk is thus zero even though the Bayes risk (and
hence the risk of ERM) might be well above zero! Hence, for n in this regime, uniform convergence
of the empirical risk to the true risk is hopeless. Indeed, the upper bound in Theorem 1 of the last
lecture is nontrivial only if n ≫ log ΠF (n), but since F shatters the inputs, log ΠF (n) = n log 2.
This observation motivates the following fundamental notion of complexity.

Definition 2. The Vapnik-Chervonenkis (VC) dimension of a set of classifiers F , denoted by
VCdim(F), is the cardinality of the largest set shattered by F . If F can shatter sets of arbitrarily
large size, then VCdim(F) = ∞. A class is a VC class if it has finite VC dimension.

Unpacking the definition. From the definition of shattering, an equivalent definition of the
VC dimension of F is the largest k ≥ 1 such that ΠF (k) = 2k; the VC dimension is infinite if
ΠF (k) = 2k for every k ≥ 1. Unpacking once more, the VC dimension of F is the largest k ≥ 1
such that there exists x1, . . . , xk ∈ X for which, for any b ∈ {0, 1}k, there exists f ∈ F satisfying

f(xj) = bj for all j ∈ [k].

That is,

VCdim(F) = max
{

k : ∃ x ∈ X k, ∀ b ∈ {0, 1}k, ∃ f ∈ F , f|x = b
}

.

As we will see in Corollary 1, the VC dimension says much more about the growth function than its
definition suggests. Remarkably, the growth function ΠF exhibits only two behaviors as n increases:

• ΠF (n) = 2n;

• ΠF (n) grows polynomially.

There is nothing in between, and the VC dimension characterizes where the phase transition occurs.
Suppose that V = VCdim(F). For n ≤ V , we have ΠF (n) = 2n by definition. However, as soon
as n > V , it holds that ΠF (n) = O(nV ). One could imagine that for n > V , it holds that
ΠF (n) = Θ(2

√
n), but this is completely ruled out.
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2 Examples
In the following examples, we often identify a hypothesis by the set of points it labels positive.

Threshold functions Let F be the class of threshold functions over R. As we saw previously,
ΠF (n) = n + 1. Hence, VCdim(F) = 1. This argument is overkill though, as there is no need to
nail down the correct growth function for this class. Instead, observe that F can shatter any single
point. However, F cannot shatter any set of size 2 since, if x1 < x2, any threshold function that
labels x1 positive must also label x2 as positive.

Intervals Let F be the class of intervals over R. It is easy to work out that ΠF (n) =
(n+1

2
)

+ 1,
so VCdim(F) = 2 (as ΠF (3) = 7 < 23). Again, arguing more simply, any set of two distinct points
can be shattered by F . On the other hand, for any set of points x1 < x2 < x3, no hypothesis in F
can assign label 0 to x2 if it assigns label 1 to x1 and x3. Thus, F cannot shatter any set of size 3.

Axis-aligned rectangles Let F be the class of axis-aligned rectangles. These are all rectangles
of the form ∏d

j=1[aj , bj ] for a, b ∈ Rn. Note that the case of d = 1 is identical to the class of
intervals over R. Let’s work out the case of d = 2 (the general case will be left as an exercise).
First, there is a set of 4 points in the plane which are shattered by F . (I drew the example in class)

Next, observe that if there is a point in a set for which none of its coordinates are extremal
(with respect to the elements in the set), then it is contained in the tightest rectangle that contains
the other points. For any set of 5 points, at least one point has no extremal coordinate, as there
are two dimensions and hence 4 extremal coordinate values. Thus, in this case, VCdim(F) = 4. It
turns out that for the case of general d, we have VCdim(F) = 2d.

Linear separators Let F be the class of linear separators, so that each hypothesis is of the form
f(x) = sgn(⟨w, x⟩ + b) for some w ∈ Rd and b ∈ R. Let’s look at the case of d = 2. It is easy to see
that 3 points in general position (i.e. 3 non-collinear points) can be shattered by F . (I drew the
example in class)

Now, suppose that we have 4 points. We consider two exhaustive cases.
Case 1: Suppose that one point is contained in the convex hull of the other 3. Since any

halfspace is a convex set, in this case it is impossible to label as negative the point in the interior
of the convex hull if the other 3 points are labeled as positive.

Case 2: Suppose that all 4 points lie on the boundary of their convex hull. Consider taking a
walk along the convex hull and picking (among the the original 4 points) the first and third point
encountered. Suppose that there is a linear separator which labels these two points as positive and
the other two points as negative. Next, note that for any two points with a common label, all the
points in their convex hull (a line) must have the same label. Hence, there are two lines consisting
of oppositely labeled points. But these two lines are not parallel (if they were, we are in Case 1,
and the lines would actually have to be identical), and so they share a common point.1 Since this
common point cannot be labeled both positive and negative, there can be no such linear separator.
So, the VC dimension for linear separators in R2 is 3.

It is a simple exercise to work out that the VC dimension of the class of linear separators in R
is 2. As we saw above, the VC dimension of the class of linear separators in R2 is 3. What happens
in general, when F is the class of linear separators in Rd? We then have VCdim(F) = d + 1.

1We are in Euclidean geometry!
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3 Perles-Sauer-Shelah-Vapnik-Chervonenkis Lemma
As promised, we will now show the following fundamental result.

Lemma 1. Let F be a class of VC dimension V . Then for all n,

ΠF (n) ≤
V∑

j=0

(
n

j

)
. (1)

(The plan is to prove this next class (on Thursday), but a proof can also be found in the
Understanding Machine Learning book of Shalev-Shwartz and Ben-David: see Lemma 6.10 therein.
My proof will be based on the (nice) one in Nina Balcan’s lecture notes: http: // www. cs. cmu.
edu/ %7Eninamf/ ML11/ lect0922. pdf )

This result has a fascinating history. It originally was stated in a paper of Vapnik and Cher-
vonenkis in 1968, without proof, although it is suspected that they already had a proof. Its proof
was first published in a paper of Vapnik and Chervonenkis (1971) that was submitted in 1969. The
result also was independently proved by both Sauer (1972) and Shelah (1972), with Shelah giving
the credit for his result to Perles. For brevity, we will call this result Sauer’s Lemma.2

Our interest, however, is in what the result buys us rather than who deserves what fraction of
the credit. Clearly, the growth of ΠF (n) is O(nV ), but let’s get an explicit bound.

Lemma 2. For all n ≥ V ,

V∑
j=0

(
n

j

)
≤
(

en

V

)V

.

Proof. Since n ≥ V , it holds that

V∑
j=0

(
n

j

)
≤

V∑
j=0

(
n

j

)(
V

n

)j−V

≤
n∑

j=0

(
n

j

)(
V

n

)j−V

.

By rewriting appropriately, we may apply the binomial theorem:(
n

V

)V n∑
j=0

(
n

j

)(
V

n

)j

=
(

n

V

)V (
1 + V

n

)n

≤
(

n

V

)V

eV .

The following corollary of Sauer’s lemma is immediate.

Corollary 1. Let F be a class of VC dimension V . Then for all n ≥ V ,

ΠF (n) ≤
(

en

V

)V

.

2To pick Sauer’s name is ironic as he actually proved an improved version of (1) where the summation goes up to
only V − 1. Yet, perhaps this improvement is enough to break the symmetry in his favor.
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4 Back to uniform convergence for infinite (VC) classes
Armed with Corollary 1, we may now apply our uniform convergence result that depended on
ΠF (n) to get an explicit bound for VC classes.

Theorem 1 (Vapnik and Chervonenkis, 1971). Let F ⊂ {0, 1}X be a VC class with VCdim(F) = V .
For any probability distribution P , any n ≥ V , and any ε > 0,

Pr
(

sup
f∈F

|(P − Pn )f | > ε

)
≤ 8

(
en

V

)V

e−nε2/32.

The above implies that for any probability distribution P and any n ≥ V , with probability at
least 1 − δ

sup
f∈F

|(P − Pn )f | ≤

√√√√32
(
V log en

V + log 8
δ

)
n

.

The proof of the first result is immediate from Theorem 1 from last class and Corollary 1. The
second result follows from inversion (set the probability equal to δ and solve for ε).

5 Uniform convergence in the realizable case
We already have seen that agnostically learning is possible when F is a VC class, and the excess
risk obtainable via ERM converges (ignoring logarithmic factors) at the rate

O

√VCdim(F) + log 1
δ

n

 .

However, in the PAC learning (i.e. realizable) setting, at least for finite classes we were able to
obtain a better convergence rate in that the rate did not have a square root. The same is true for
VC classes, as we will now see.

Theorem 2 (Vapnik and Chervonenkis (1971)). Let F ⊂ {0, 1}X be a VC class with VCdim(F) =
V , and let f̂ be an ERM classifier (which, given a training sample, outputs a hypothesis in F that
minimizes the empirical risk), and let P be an arbitrary probability distribution P over X × Y that
satisfies Y = c(X) for some c ∈ F .

Then for any n ≥ V , and any ε > 0.

Pr
(
R(f̂) > ε

)
≤ 2

(2en

V

)V

e−nε/2.

Equivalently, for any n ≥ V , with probability at least 1 − δ

R(f̂) ≤
2
(
V log 2en

V + log 2
δ

)
n

.

Before proving this result, observe that we can reframe our goal in terms of the convergence of
the empirical risk R̂(f̂) of ERM to its true risk. Since R(f̂) = R(f̂) − R̂(f̂) for ERM, it follows
that a high probability bound on

∣∣∣R(f̂) − R̂(f̂)
∣∣∣ is exactly equivalent to a high probability bound

on the risk R(f̂).
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The proof of Theorem 2 relies on the above observation and two lemmas. As before, we use the
notation that Z = (X, Y ) (likewise for Zj = (Xj , Yj) and Z ′

j = (X ′
j , Y ′

j )). We again introduce a
ghost sample Z ′

1, . . . , Z ′
n; recall that each Zj = (Xj , Yj) is a labeled sample drawn from probability

distribution P .
Lemma 3. If nε > 2, then

Pr

 sup
f∈F : R̂(f)=0

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (Zj) − EZ∼P [ℓf (Z)]

∣∣∣∣∣∣ > ε


≤ 2 Pr

 sup
f∈F : R̂(f)=0

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (Zj) − 1

n

n∑
j=1

ℓf (Z ′
j)

∣∣∣∣∣∣ > ε/2

 .

We won’t cover the proof of this result. However, the high-level argument is similar the one we
used for the general (agnostic) case.
Lemma 4. It holds that

Pr

 sup
f∈F : R̂(f)=0

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (Zj) − 1

n

n∑
j=1

ℓf (Z ′
j)

∣∣∣∣∣∣ > ε/2

 ≤ ΠF (2n)2−nε/2.

Proof. Let π(Z1), . . . , π(Zn), π(Z ′
1), . . . , π(Z ′

n) be an arbitrary permutation of Z1, . . . , Zn, Z ′
1, . . . , Z ′

n.
Observe that from the i.i.d. property of the double sample, the distribution of the random variable

sup
f∈F :

∑n

j=1 ℓf (Zj)=0

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (Zj) − 1

n

n∑
j=1

ℓf (Z ′
j)

∣∣∣∣∣∣
is equal to the distribution of the random variable

sup
f∈F :

∑n

j=1 ℓf (π(Zj))=0

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (π(Zj)) − 1

n

n∑
j=1

ℓf (π(Z ′
j))

∣∣∣∣∣∣
Let U(S2n) be the uniform distribution over the symmetric group S2n, the set of all permutations

over 2n items. It therefore holds that

Pr

 sup
f∈F : R̂(f)=0

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (Zj) − 1

n

n∑
j=1

ℓf (Z ′
j)

∣∣∣∣∣∣ > ε/2


= E

 sup
f∈F : R̂(f)=0

1

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (Zj) − 1

n

n∑
j=1

ℓf (Z ′
j)

∣∣∣∣∣∣ > ε/2


= E

Eπ∼U(S2n)

 sup
f∈F :

∑n

j=1 ℓf (π(Zj))=0
1

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (π(Zj)) − 1

n

n∑
j=1

ℓf (π(Z ′
j))

∣∣∣∣∣∣ > ε/2

 .

We will get a small upper bound just for the internal expectation over π. For a fixed double
sample, let F2n ⊂ F be a class which, for each labeling of X1, . . . , Xn, X ′

1, . . . , X ′
n attainable by a

hypothesis in F , contains precisely one representative from f that obtains this labeling. Then the
conditional expectation above (conditional on the double sample) is equal to

Eπ∼U(S2n)

 sup
f∈F2n:

∑n

j=1 ℓf (π(Zj))=0
1

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (π(Zj)) − 1

n

n∑
j=1

ℓf (π(Z ′
j))

∣∣∣∣∣∣ > ε/2

 ,
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which is at most

Eπ∼U(S2n)

 ∑
f∈F2n:

∑n

j=1 ℓf (π(Zj))=0

1

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (π(Zj)) − 1

n

n∑
j=1

ℓf (π(Z ′
j))

∣∣∣∣∣∣ > ε/2




= Eπ∼U(S2n)

 ∑
f∈F2n

1

 n∑
j=1

ℓf (π(Zj)) = 0

1

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (π(Zj)) − 1

n

n∑
j=1

ℓf (π(Z ′
j))

∣∣∣∣∣∣ > ε/2


=

∑
f∈F2n

Prπ∼U(S2n)

 n∑
j=1

ℓf (π(Zj)) = 0
∧ n∑

j=1
ℓf (π(Z ′

j)) > nε/2

 .

Now, suppose that there are at least r = nε/2 mistakes among 2n points. How many per-
mutations are there in which no mistakes occur in the first half of the permuted double sample?
There are n(n − 1) · · · (n − r + 1) ways to arrange the r mistake points in the second half, and
(2n − r)(2n − r − 1) · · · 1 ways to arrange the remaining points thereafter. On the other hand, if we
are unrestricted in where the mistakes are placed, then the first product is 2n(2n−1) · · · (2n−r+1).
Therefore, the fraction of the permutations where no mistakes occur in the first half is at most

n

2n

n − 1
2n − 1 · · · n − r + 1

2n − r + 1 ≤ 2−r ≤ 2−nε/2.

Therefore,

Pr

 sup
f∈F : R̂(f)=0

∣∣∣∣∣∣ 1n
n∑

j=1
ℓf (Zj) − 1

n

n∑
j=1

ℓf (Z ′
j)

∣∣∣∣∣∣ > ε/2

 ≤ E
[
|F2n|2−nε/2

]
≤ ΠF (2n)2−nε/2.
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