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1 Learnability and VC dimension
Let’s begin by recasting the risk bounds we established in the last few lectures in a minimax
framework. In the bound below, the outer infimum serves as the “min” player and the supremum
serves as the “max” player. Let F be a class for which VCdim(F) = V .

In the agnostic learning setting, we have
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where

• the probability is with respect to the training sample (X1, Y1), . . . , (Xn, Yn) iid∼ P ;

• the infimum is over all learning methods that output a hypothesis f̂ ∈ F that depends on the
training sample;

• the supremum is over all probability distributions over X × Y.

On the other hand, in the realizable case (i.e., PAC learning), we have1
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where the probability and infimum are as before, but now the supremum is restricted to PF , the
set of all distributions P over X × Y for which the label Y = c(X) for some c ∈ F .

Each of the above bounds was established by showing that a particular learning method, empir-
ical risk minimization, obtains low risk with high probability no matter the distribution generating
the data.2 Thus, if F has finite dimension, a problem is “learnable” in that, no matter the distri-
bution, the gap between the error our learning method achieves and the best possible error (when
outputting hypotheses in F) converges to zero as the sample size increases. One might then ask if
there is a converse:

Is it necessary for the VC dimension to be finite in order for a problem to be learnable?

The answer is yes! The VC dimension thus characterizes the classes F for which learnability holds.
1I did not prove this result in class, but you can find a proof in the previous set of lecture notes.
2Interestingly, the “min” player could perform well even though it was straightjacketed (so to speak) by being

forced to be a proper learner (which restricts f̂ to lie in F); we could have entertained e.g. allowing predictions
according to weighted majority votes over F , but the above bounds hold without broadening the infimum to this
larger class.
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2 Minimax lower bounds in the realizable and agnostic cases
Ignoring logarithmic factors, the upper bound (1) is essentially unimprovable. In all the bounds
below, the learning method f̂ can be any learning method, not necessarily one restricted to taking
values in the set F .

Theorem 1. Let F satisfy VCdim(F) = V + 1. Then in the realizable case, for n ≥ 15,
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We will not see a proof of this result here, but I’ll provide some additional lecture notes if you
are interested in seeing a proof of a related result (a lower bound on the expected risk). Seeing how
lower bounds are proved can be very valuable; the techniques employed often greatly differ from
those used to prove upper bounds.

A similar lower bound can be worked out in the agnostic case.

Theorem 2. There are constants c1, c2 > 0 such that, for any F satisfying VCdim(F) = V , for
any learning method f̂ , there exists a distribution P over X × Y for which
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3 Compression schemes

Definition 1. A compression scheme with kernel size k for a concept class C is specified by a choice
of compression map κ and a reconstruction map ρ where:

• κ takes as input a labeled sample of size n (for any n) that is labeled by a concept in C, and
κ then outputs a subsequence of at most k examples;

• ρ takes as input a labeled sample of size at most k labeled by a concept in C, and ρ then
outputs a hypothesis in {0, 1}X ;

• we further have that for any sample S labeled by a concept c ∈ C, the hypothesis f̂ = ρ(κ(S))
is consistent with S.

Theorem 3. Let (κ, ρ) be a compression scheme for C with kernel size k. Suppose that X1, . . . , Xn

are drawn independently from P and labeled according to some concept c ∈ C, yielding a labeled
sample S. Let f̂κ,ρ denote the hypothesis defined as f̂κ,ρ = ρ(κ(S)). Then with probability at least
1 − δ,

R(f̂ρ,κ) ≤
k log(ne/k) + log 1

δ

n − k
.

Proof. Throughout the proof, we use the notation Zj to denote labeled example (Xj , Yj). Note
that S = ((X1, Y1), (X2, Y2), . . . , (Xn, Yn)).

Let T be the set of all subsets of {1, . . . , n} whose cardinality is at most k. Consider a fixed
subset I ∈ T , and let ZI denote the subsequence of examples (Zj)j∈I . Corresponding to I is a
hypothesis

f̂I,ρ = ρ(ZI).
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Observe that f̂I,ρ depends only on ZI . Since ZI is independent of Z[n]\I , it also is true that f̂I,ρ is
independent of Z[n]\I . Now, for each fixed I, the probability that f̂I,ρ has risk more than ε and yet
is consistent with c on X[n]\I is at most

(1 − ε)n−k. (2)

Next, we extend the above argument to hold simultaneously for all possible choices of I from T ,
which includes the random, data-dependent choice that results froms our actual training sample.
To this end, note that the cardinality of T is ∑k

j=0
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j

)
≤
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)k from Lemma 2 in the previous set
of lecture notes. Therefore, the probability that f̂κ,ρ(x) has risk more than ε and yet is consistent
with Zn is at most (
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The result follows by inversion (set the RHS to δ).

Definition 2. An agnostic compression scheme with kernel size k for a concept class C is specified
by a choice of compression map κ and a reconstruction map ρ where:

• κ takes as input a labeled sample of size n (for any n), and κ then outputs a subsequence of
at most k examples;

• ρ takes as input a labeled sample of size at most k, and ρ then outputs a hypothesis in {0, 1}X ;

• we further have that for any sample S, the hypothesis f̂ = ρ(κ(S)) satisfies R̂(f̂ is at most
minf∈C R̂(f). That is, the empirical risk of f̂ on the sample S is no larger than that of the
empirical risk minmizer over C.

Lemma 1. If there is a compression scheme for C, then there is also an agnostic compression
scheme.

Proof. Let (κ, ρ) be a compression scheme for C. Given a labeled sample of n examples, use ERM
over C to obtain f̂ERM. Discard the examples where ERM is incorrect. On the remaining examples,
ERM is consistent, and so we may apply our compression scheme for C on these examples. The
resulting hypothesis f̂ρ,κ will also be correct on these examples, and it can only possibly do better
than ERM on the removed examples. Hence, its empirical risk is upper bounded by the empirical
risk of ERM. (In addition, we use a proper compression scheme, then it must be the case that the
empirical risk of f̂ρ,κ is equal to the empirical risk of ERM!).
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