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Motivation

Why dependence estimation?
Consider a few fundamental problems in neural analysis

• Learning which neurons share information, conditional on
function/task

• Discovering how the brain encodes task-relevant information

• Feature selection for machine learning
• Select features that are most relevant to some task (e.g.

Brain-computer interfaces)
• Identifying how dependence changes over time
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Rate coding versus temporal coding

Support for rate coding

• Complex cells tuned to specific orientations
• Tuning function λ(s) for stimulus s

Support for temporal coding

• Superior stimulus discriminability in the fly H1-neuron as
compared to using spike counts

• Edit distance methods from Victor and Purpura
• V1 and V2 in awake monkeys

• Firing rate difficult to code for low spike counts
• Poor reaction time coding
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Rate coding

Two sequences of spike times x and y

⇓ (histogram with bin-width h)

Spike count over intervals

Tweak parameters:

• selection of bin-width

• where to start the first bin
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Rate coding

Intensity models:

• i.i.d.

x1 x2 x3 x4 x5

• Markov

xt−4 xt−3 xt−2 xt−1 xt

• Dependent on spike rates of last k intervals.

· · ·xt−k xt−2 xt−1 xt
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Dependence

For second order dependence, consider:

D2 = E[(x − E[x ])⊗ (y − E[y ])] = E[(x − E[x ])(y − E[y ])T ]

‖D2‖2F = 0 ⇐⇒ X and Y uncorrelated
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Dependence in an RKHS

Use feature maps x → φ(x) ∈ F
y → ψ(y) ∈ G

for RKHSs F and G, with inner products k(x , x ′) = 〈φ(x), φ(x ′)〉
l(y , y ′) = 〈ψ(y), ψ(y ′)〉

Hilbert-Schmidt Independence Criterion (HSIC) measures the
cross-covariance between the kernelized x and y :

Dh = E[(φ(x)− E[φ(x)])⊗ (ψ(y)− E[ψ(y)])]

‖Dh‖2HS = 0 ⇐⇒ X ⊥⊥ Y

[Gretton et al. 2005]
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Dependence in an RKHS

By making use of the tensor product property 〈x ⊗ y〉z = x〈y , z〉,
the Hilbert-Schmidt norm can be computed as

Exx ′yy ′ [k(x , x ′)l(y , y ′)] + Exx ′ [k(x , x ′)l(y , y ′)]

− 2Exy [Ex ′ [k(x , x ′)]Ey ′ [l(y , y ′)]]

The (biased) empirical estimator has the following compact form:

1

T
tr HKHL

where

K is the kernel matrix Kij = k(xi , xj)

L is the kernel matrix Lij = l(yi , yj)

H = δij − 1
T
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Dependence in an RKHS

For k(·, ·) and l(·, ·) universal kernels [Steinwart 2002],
it can be shown that the cross-covariance of φ(x) and ψ(y) is zero
if and only if x and y are independent random variables.

Space for Cross-Covariance Estimation Sensitivity

Original space Second order dependence

Kernel space All orders of dependence
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Hilbert space distribution embeddings

Another view of this dependence measure may
be more clarifying.
P(x , y) = P(x)× P(y) if and only if X and Y
are statistically independent.

Suppose we had some injective mapping of
distributions to a Hilbert space.

Dependence test:

• In new space, measure distance between
joint and product of marginal distributions

• For X and Y independent, distance
asymptotically → 0

[Smola et al. 2007]
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Hilbert space distribution embeddings

Suppose X ∼ p.
For the feature map x → φ(x) ∈ F , Smola et al. defined the
expectation operator of the distribution p as

µ[p] = Ex [φ(x)]

We similarly can embed the joint distribution P(X ,Y ) using the
mapping (x , y)→ v((x , y), (·, ·)), where we factorize kernel
v((·, ·), (·, ·)) as:

v((x , y), (x ′, y ′)) = k(x , x ′)l(y , y ′)

Suppose that we had an embedding of the distributions of X and
Y into Hilbert spaces F and G such that we could compute the
distances between the embeddings of the distributions.
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Hilbert space distribution embeddings

Since an obvious measure is the difference between Px ,y and
Px × Py , let’s consider the distance between these distributions
embeddings in an RKHS:

‖µ[Pxy ]− µ[Px × Py ]‖2

↑
Equivalent to Hilbert-Schmidt Independence Criterion from before
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Rate coding

Intensity models:

• i.i.d.
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Dependence for graphical models

Suppose binned spike train data for bin-width h.
If we do not expect spike rate at time t to influence spike rate
beyond t + τh, then we can consider a graphical model with edges

(xs , xt), (xs , yt), (ys , yt) for |s − t| ≤ τ.

Sufficient statistics decompose along the maximal cliques of this
graphical model

⇓

Compute the dependence within each of the maximal cliques in
decomposition separately.

[Altun et al. 2004]
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Dependence for graphical models

The graph’s maximal cliques are

(xi , . . . , xi+τ , yi , . . . , yi+τ ) for 1 ≤ i ≤ T − τ.

We kernelize the maximal cliques and consider each realization of
the variables in a maximal clique as a sample.∑

c∈C
‖µc [Pc(xc , yc)]− µc [Pc(xc)Pc(yc)‖2HS

The empirical estimator is similar to the form before ( 1
T tr HKHL),

with kernel matrices now representing inner products of the clique
variables in each multivariate’s respective kernel space, and the
sums going over all pairs of the maximal clique samples.
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Extension to fMRI data

• Measuring dependence in spike rate data

• Similar setting: Measuring dependence among fMRI voxels

Explored in Gretton et al. (2006) for Macaque monkey visual
cortex

Non-iid

• Temporal dependence in neural activation

• HRF convolution-induced latency

x1 x2 x3 x4 x5
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Vector space embeddings of spike trains

Suppose that we have two sequences of spike times:

x = x(1), x(2), . . . , x(mx)

y = y(1), y(2), . . . , y(my )

We use x(i) to refer both to the i th spike and its corresponding
time of occurrence.

Spike y(j) directly precedes x(i) if j = maxj ′{j ′ : y(j ′) < x(i)}.

If y(j) directly precedes x(i),
then we refer to y(j − k) as y ’s k th preceding spike of x(i).
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Vector space embeddings of spike trains

Spike history space
Let x(i) be a realization of a random variable X = (x1, x2, . . . , xτ ),
where xj is time difference between x(i) and x ’s j th preceding
spike of x(i).

Note that x ’s k th preceding spike of x(i) is simply x(i − k).

Similarly, let yi be a realization of a R.V. Y = (y1, y2, . . . , yτ ),
where yj is the time difference between x(i) and y ’s j th preceding
spike of x(i).
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Probabilistic model

Consider the joint densities P(xi) and P(yi).
If underlying processes generating spike times x and y independent,
then for reference spike x(i):

Time since each of x ’s last τ spikes preceding x(i)

⊥⊥

Time since each of y ’s last τ spikes preceding x(i)

More generally, we have X ⊥⊥ Y .
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Samples from the spike history space

Similar to structured HSIC method, we use τ to impose a finite
dependence history to bound the dimensionality of our space.
We have joint samples (xt0 , yt0), (xt0+1, yt0+1), . . . , (xmx , ymx ).
For computing the independence test, we consider

‖µ[P(X ,Y )]− µ[P(X )P(Y )]‖2HS

with empirical estimator 1
T tr HKLH for summation over all T

existing pairs (xt , yt).

The above samples are derived from referencing to spikes in spike
train x.
Also, need to repeat the above for alternate X and Y which are
referenced to spikes in spike train y.
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Sign language recognition

• Sign language recognition using fMRI scanning of motor
cortex

• Feature space, 64× 64× 3 voxels > 104.

• Hidden Markov models work fairly well for language
recognition tasks

• Need lower dimensionality!

Very roughly, backward elimination where we retain the features
whose removal significantly reduces the dependence between the
active set and the labels.
Decomposing signs into smaller motor units provides a method for
doing feature selection for individual signs.
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Future work and open problems

• Experiments!
• Spike sequence data (synthetic and actual)

• Spike history space
• Firing rate encoding

• fMRI data
• Voxel-stimulus dependence estimation
• Conditional on task, voxel-voxel dependence estimation

Open

1 Extending HSIC to dependency among 3 or more neurons.

2 Improvements on spike history space?
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Questions?

Answers?

28 / 28


