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1 Stochastic convex optimization
A stochastic convex optimization problem is specified by a probability distribution P over a set Z,
a convex set V , and a function f : V × Z → R that is convex in its first argument. The goal is to
find some w ∈ V which minimizes the objective

F (w) = EZ∼P

[
f(w, Z)

]
.

We will use w∗ ∈ V to denote an arbitrary minimizer of F , so that F (w∗) = minw∈V F (w). In
analogy to statistical learning, we refer to F (w) as the risk of w and F (w) − F (w∗) as the excess
risk of w.

Supervised learning with linear predictors can be recovered by:

• taking Z = X × Y, so that Z = (X, Y ) for feature vector X and label Y ;

• defining f(w, z) = f(w, (x, y)) = ℓ(⟨w, x⟩, y) for some loss function ℓ : R × Y → R that is
convex in its first argument.

In order to approximately minimize the objective F (w), a learning algorithm will be presented
with i.i.d. samples Z1, . . . , ZT distributed according to P , similar to the statistical learning setting.

We will study algorithms for solving the stochastic optimization problem based on online convex
optimization (OCO) and a technique known as an online-to-batch conversion. The idea will be to:

• first, frame an online version of the above problem as an online convex optimization problem;

• next, use an online learning algorithm (e.g., online gradient descent) to obtain low regret for
this problem;

• finally, obtain a single recommended prediction ŵ whose excess risk F (ŵ) − F (w∗) is approx-
imately bounded by the regret (averaged over rounds) of the online learning algorithm; here,
the bound on the excess risk will hold either in expectation or with high probability.

To realize the first step, for each t ∈ [T ], we define the loss function ℓt(w) = f(w, Zt). We may
then use an OCO algorithm to obtain low regret against any comparator u ∈ V , i.e., to ensure that

RT (u) :=
T∑

t=1
f(wt, Zt) −

T∑
t=1

f(u, Zt) (1)

is not too large.
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2 Online-to-batch conversion
Suppose that an online learning algorithm that plays w1, . . . , wT against the sequence Z1, . . . , ZT

obtains regret RT (u) against action u ∈ V .1 We will prove that the simple average w̄T := 1
T

∑T
t=1

obtains low excess risk relative to u ∈ V whenever RT (u) is small.
We will derive an in-expectation bound using elementary arguments and then a high probability

bound using a more sophisticated martingale-based argument.

2.1 An in-expectation guarantee

To introduce the main ideas in the simplest way possible, in this subsection we assume that Learner
is deterministic. That is, given the previous observations Z1, Z2, . . . , Zt−1, Learner’s action wt is
deterministic. Using ideas from the next subsection, Section 2.2, it is not difficult to extend the
ideas here to randomized learning strategies.

Theorem 1. Assume that Z1, Z2, . . . , ZT are i.i.d. according to distribution P . In the setting of
OCO, suppose Learner is deterministic and plays actions w1, w2, . . . , wT against loss vectors of the
form ℓt(w) = f(w, Zt). For any u ∈ V , let RT (u) be Learner’s regret against action u, defined as
in (1).

Then, for all u ∈ V ,

E [F (w̄T )] ≤ E
[

1
T

T∑
t=1

F (wt)
]

≤ F (u) + E [RT (u)]
T

. (2)

The second inequality actually holds even without any convexity assumptions; of course, we do
want the regret RT (u) to be sublinear. The first inequality requires F to be convex, for which it
suffices for f to be convex in its first argument.

Proof (of Theorem 1). For the first inequality in (2), use the convexity of F and Jensen’s inequality.
We now establish the second inequality. Let u ∈ V be an arbitrary, fixed action. Then

T∑
t=1

f(wt, Zt) =
T∑

t=1
f(u, Zt) + RT (u).

Also, as u is fixed, we have E[f(u, Zt)] = F (u).
Next, for any t ∈ [T ], observe that

E[f(wt, Zt)] = E
[
E[f(wt, Zt) | Z1, Z2, . . . , Zt−1]

]
= E[F (wt)],

where the second equality follows because the action wt is fixed when conditioning on Z1, . . . , Zt−1.
Therefore,

1
T

T∑
t=1

E [F (wt)] ≤ F (u) + E [RT (u)]
T

.

1Note that RT (u) is a random variable by way of its dependence on Z1, . . . , ZT and Learner’s randomization (if
any).
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2.2 High probability bound

In order to obtain a high probability bound, we will develop some machinery to analyze stochastic
processes.

Let X1, X2, . . . , XT be a stochastic process for which each Xt is deterministic given a history
Ht. Informally, the history can be thought of as “everything that has happened until the end of
round t.”2. We call the sequence of histories (Ht)t∈[T ] a filtration.

Definition 1 (Martingale). Let the sequence (Xt)t∈[T ] be as above. We say X1, X2, . . . , XT is a
martingale adapted to the filtration (Ht)t∈[T ] if for all t ∈ [T ]:

• E[|Xt|] < +∞;

• E[Xt | Ht−1] = Xt−1.

Similar to X1, X2, . . . , XT above, let Y1, Y2, . . . , YT be a stochastic process for which each Yt is
deterministic given a history Ht. We say Y1, X2, . . . , YT is a martingale difference sequence adapted
to the filtration (Ht)t∈[T ] if for all t ∈ [T ]:

• E[|Yt|] < +∞;

• E[Yt | Ht−1] = 0.

Gambling offers an excellent way to illustrate martingales.
2Formally, each Ht is a σ-algebra, and we have H0 ⊂ H1 ⊂ . . . , ⊂ HT . For our purposes here, the informal notion

of Ht as history will be enough to understand the main ideas.
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Example 1 (Gambling). Suppose a gambler starts with some positive wealth X1 = Y1. In
each of a sequence of rounds t = 2, 3, . . . , T , the gambler bets all of her wealth Xt on a fair
coin coming out Heads, and then the coin is flipped:

• if the outcome is Heads, she wins Yt = Xt−1 and hence doubles her wealth;

• if the outcome is Tails, she wins Yt = −Xt−1 (i.e., she loses Xt−1, which is all of her
wealth!).

The gambler’s wealth is then updated according to Xt = Xt−1 + Yt, which may be rewritten as

Xt =
t∑

s=1
Ys.

As we will now confirm, the sequence (Xt)t∈[T ] is a martingale, and the sequence (Yt)t∈[T ]
is a martingale difference sequence. First, E[|Xt|] < +∞ since Xt ∈ [0, 2t−1X1]. In addition,
we clearly must have E[|Yt|] < +∞ since |Yt| = Xt−1. Next, observe that

E[Xt | Ht−1] = E
[

t∑
s=1

Ys | Ht−1

]

=
t−1∑
s=1

Ys + E[Yt | Ht−1]

= Xt−1 + 1
2 · Xt−1 + 1

2 · (−Xt−1)

= Xt−1.

Hence, (Xt)t∈[T ] is a martingale.
Next, let us confirm that (Yt)t∈[T ] is a martingale difference sequence. We actually already

verified that E[Yt | Ht−1] = 0 in the previous sequence of equalities. Even so, it is instructive
to verify this fact a different way. Observe that Yt = Xt − Xt−1. Therefore,

E[Yt | Ht−1] = E[Xt − Xt−1 | Ht−1]
= E[Xt | Ht−1] − Xt−1

= 0,

where the second equality uses the fact that (Xt)t∈[T ] is a martingale. Therefore, as one might
expect, if Yt is a difference of successive terms of a martingale, then (Yt)t∈[T ] is a martingale
difference sequence.

The following concentration inequality is known as Hoeffding-Azuma’s inequality, also com-
monly referred to as Azuma’s inequality.

Theorem 2. Let Y1, Y2, . . . , YT be a martingale difference sequence adapted to the filtration (Ht)t∈[T ].
Assume that there are stochastic processes (At)t∈[T ] and (Bt)t∈[T ] and positive constants c1, c2, . . . , cT

such that, for all t ∈ [T ], with probability 1:

• we have At and Bt are deterministic given Ht−1;

• At ≤ Yt ≤ Bt and Bt − At ≤ ct.
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Then for all ε > 0,

Pr
(

T∑
t=1

Yt ≥ ε

)
≤ exp

(
− 2ε2∑T

t=1 c2
t

)
. (3)

We will only need to use a specialization of the above theorem for which ct = c for all t ∈ [T ],
in which (3) specializes to

Pr
(

T∑
t=1

Yt ≥ ε

)
≤ exp

(
− 2ε2

Tc2

)
. (4)

All the tools are in place for a high probability online-to-batch conversion.

Theorem 3. Take the setting of Theorem 1 but with restriction that f(w, Z) ∈ [0, b] for all w ∈ V
and Z ∈ Z. Then for all u ∈ V , with probability at least 1 − δ,

F (w̄T ) ≤ 1
T

T∑
t=1

F (wt) ≤ F (u) + RT (u)
T

+ b

√
2 log 1

δ

T
. (5)

Proof. Just like in Theorem 1, the first inequality in (5) is from Jensen’s inequality. The main work
is establishing the second inequality.

For each t ∈ [T ], let Ht denote the history up until time t (which includes Z1, . . . , Zt and any
randomization employed by Learner until the end of round t). In addition, define

Yt := f(u, Zt) − f(wt, Zt) − E [f(u, Zt) − f(wt, Zt) | Ht−1]
= f(u, Zt) − f(wt, Zt) − (F (u) − F (wt))

The idea of the proof is to show that Y1, Y2, . . . , YT is a martingale difference sequence, to control
its sum via Hoeffding-Azuma’s inequality, and then to relate this sum to the excess risk.

First, for each t ∈ [T ] it holds that E [Yt | Ht−1] = 0. Moreover, since f(w, Z) ∈ [0, b] for all
w ∈ V and Z ∈ Z, it holds that |Yt| ≤ 2b and hence (Yt)t∈[T ] is a martingale difference sequence.

In order to apply Theorem 2, recalling that wt is deterministic given Ht−1, observe that we can
take At = −b − (F (u) − F (wt)) and Bt = b − (F (u) − F (wt)); hence, we can take ct = 2b. Applying
Theorem 2, we see that

Pr
(

T∑
t=1

Yt ≥ ε

)
≤ exp

(
− ε2

2b2T

)
.

Therefore, with probability at least 1 − δ,
T∑

t=1

(
f(u, Zt) − f(wt, Zt)

)
−

T∑
t=1

(
F (u) − F (wt)

)
≤ b

√
2T log 1

δ
.

Rearranging, with probability at least 1 − δ,
T∑

t=1
F (wt) ≤ TF (u) +

T∑
t=1

(
f(wt, Zt) − f(u, Zt)

)
+ b

√
2T log 1

δ

= TF (u) + RT (u) + b

√
2T log 1

δ
.

The result follows by dividing through by T .
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Bibliographical notes
1. For the particular form of Hoeffding-Azuma’s inequality (Theorem 2) stated here, see Theorem

20.8 of Roch (2018).

2. The first work to provide a general study of online-to-batch conversions for general losses
is Cesa-Bianchi et al. (2004); Theorem 3 is essentially from this fundamental paper. Their
focus was on converting bounds on the cumulative loss (as compared to regret) of an online
learning algorithm to bounds on its risk (as compared to excess risk). A key idea from this
work was developed in a more specialized setting by (Blum et al., 1999, see Theorem 4).

3. Zhang (2005) showed, for the setting of regression with squared loss, how to obtain high-
probability online-to-batch conversions with faster rates of convergence, paying an additional
price in terms of T as low as O

(
log T

T

)
instead of the price of O

(√
1T
)

present in Theorem 3.
A few years later, Kakade and Tewari (2008) demonstrated that this lower price could be
achieved generally under the assumption of strongly convex losses that also are Lipschitz
(essentially, a bounded gradient assumption). More recently, Mehta (2017), leveraging ideas
developed in Van Erven et al. (2015), showed that the lower price can still be enjoyed under
exp-concavity.
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