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6. CHOICE UNDER UNCERTAINTY 
 

 

OUTLINE 

6.1 Introduction 

6.2 The Indirect Utility Function 

6.3 Prospects and Their Properties 

6.4 Expected Utility Theory 

6.5 Attitudes Towards Risk 

6.6 Certainty-Equivalent Wealth and the Risk Premium 

6.7 An Application: The Demand for Insurance 

 

 

6.1 INTRODUCTION 

Many decisions are made in the presence of uncertainty. We will we characterize that 

uncertainty in terms of a set of possible states of nature with associated probabilities. 

Each possible state of nature is in turn associated with a value of wealth for the decision-

maker. Decisions must be made prior to the resolution of the uncertainty (that is, prior to 

decision-maker knowing which state of nature will be realized).  

 

We begin by constructing a payoff function expressed in terms of wealth and prices.  

 

  

6.2 THE INDIRECT UTILITY FUNCTION 

The indirect utility function is a payoff function constructed from the utility 

maximization problem that we examined in Topic 3.3-3, where an agent with wealth 

level m chose consumption levels for two goods (x and y) and leisure: 

 (6.1)  
lyx ,,

max
  ),,( lyxui    subject to   mwlypxp YX =++  
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Recall that the maximizing solution involves two tangency conditions: 

(6.2)  
Y

X
xy p

pMRS =  

and 

(6.3)  
Y

ly p
wMRS =  

which can be solved in combination with the budget constraint to find optimal 

consumption values for x, y and l as functions of prices, and w and m. Let ),,(* mwpx , 

),,(* mwpy  and ),,(* mwpl  denote these optimal solutions, where p is the vector of 

prices. 

 

What is the value of the utility function at this optimal solution? 

 

If we substitute the optimal solutions back into the utility function we obtain 

(6.4)  )),,(),,,(),,,((),,( *** mwplmwpymwpxumwpv =  

 

This is the indirect utility function (IUF). It measures the value of the objective function 

at the optimum, expressed as a function of the parameters in the budget constraint. (It is a 

particular type of a maximum value function). 

 

Cobb-Douglas Example 

Suppose preferences are Cobb-Douglas: 

(6.5)  δβα lyxlyxu =),,(  

 

The utility-maximization conditions are 

(6.6)  
Y

X

p
p
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=
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Recall that these equations can be solved by substitution. In particular, use (6.6) and (6.7) 

to express x and l in terms of y, and then substitute these into (6.8) and solve for y: 

(6.9)  
Y

Y p
mmpy

)(
),(

δβα
β
++

=  

 

Now substitute this solution for y into (6.6) and solve for x, and into (6.7) and solve for l: 

(6.10)  
X
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(6.11)  
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Substitution of these optimal solutions into the objective function yields the IUF: 
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where p is a vector of prices. 

 

For our purposes, we are primarily interested in the relationship between v and m, so we 

will write this IUF as  

(6.13)  θmwpbmwpv ),(),,( =  

where 
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and 

(6.15)  δβαθ ++=  

 

For the most part we will assume that prices and the wage are fixed (focusing instead on 

uncertainty about m), so to simplify notation with will drop the functional dependence of 

v on p and w, and simply write )(mv  to denote the indirect utility function. 1 

                                                 
1 The interpretation of v(p,w,m) is actually somewhat more complicated than described here. In a more 
advanced course you would be introduced to the concept of a Von Neuman-Morgenstern utility function 
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What is the shape of )(mv  when plotted against m? This depends on the size of θ .  

 

Take the derivate of )(mv  with respect to m: 

(6.16)  1),()( −=
∂

∂ θθ mwpb
m
mv  

 

The sign of this derivative tells us the slope of )(mv  against m. It is positive: higher 

wealth leads to higher utility. The more interesting property is how that slope changes as 

m rises. That property is embodied in the second derivate of )(mv  with respect to m: 

(6.18)  2
2

2

)()1()( −−=
∂

∂ θθθ mpb
m

mv  

The sign of this second derivative depends critically on the size of θ  relative to one: 

 

• if 1<θ  then the second derivate is negative: )(mv  is increasing at a decreasing rate 

(as depicted in Figure 6-1). That is, )(mv  is strictly concave in m. 

• if 1=θ  then the second derivate is zero: )(mv  is increasing at a constant rate (as 

depicted in Figure 6-2). That is, )(mv  is linear in m. 

• if 1>θ  then the second derivate is positive: )(mv  is increasing at an increasing rate 

(as depicted in Figure 6-3). That is, )(mv  is strictly convex in m. 

 

The IUF we have examine here is just an example, derived from Cobb-Douglas 

preferences. We can of course construct an IUF from any underlying preferences but in 

all cases one of its key properties  – in the context of choice under uncertainty – is its 

curvature against m: is it strictly concave, linear or strictly convex? We will soon see why 

this is so important. 

 

 

                                                                                                                                                 
defined over wealth. However, for our purposes we can think of v(p,w,m) in terms of the underlying utility 
function over goods despite that interpretation not being quite correct.  
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6.3 PROPSECTS AND THEIR PROPERTIES 

Suppose an agent faces some uncertainty about her level of wealth. This uncertainty 

could arise from a variety of sources. For example: she may lose her job; her investment 

portfolio may perform badly; her house might burn down; she may become ill and be 

unable to work.  

 

Let us characterize this uncertainty in terms of a prospect.  

 

A prospect P is a set of state-contingent values im  (which we will interpret here to be 

wealth values) and associated probabilities iπ  that satisfy unitarity: 

(6.19)  { }nnmmmP πππ ,....,,;,.....,, 2121=     such that    ∑
=

=
n

i
i

1

1π  

 

We will sometimes refer to the n states that can possibly arise under the prospects as the 

“states of nature” associated with the prospect. 

 

A certain prospect is one for which immi ∀= . That is, wealth is the same is all states. 

 

The expected value of a prospect is the expected value of the wealth outcomes under that 

prospect: 

(6.20)  ∑
=

==
n

i
iimmP

1
][] πEE[   

 

The variance of a prospect is the variance of the wealth outcomes under that prospect: 

(6.21)  ∑
=

−==
n

i
ii mmP

1

222 )(][][ μπσσ  

where ]mE[≡μ . 
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Example 1 

Consider a prospect with two possible states: 

  },;64,100{ 2
1

2
1=AP  

The expected value of this prospect is 

  82)64()100(] 2
1

2
1 =+=APE[  

The variance of this prospect is 

  324)8264()82100(][ 2
2
12

2
12 =−+−=APσ  

 

Example 2 

Consider a prospect with three possible states: 

  },,;36,64,196{ 4
1

2
1

4
1=BP  

The expected value of this prospect is 

  90)36()64()196(] 4
1

2
1

4
1 =++=BPE[  

The variance of this prospect is 

  3876)9036()9064()90196(][ 2
4
12

2
12

4
12 =−+−+−=BPσ  

Note that this prospect has a higher expected value than AP  from example 1 but it has a 

much higher variance. We will say that BP  has higher risk than AP .   

 

Example 3 

Consider a certain prospect with two possible states: 

  },;82,82{ 2
1

2
1=CP  

The expected value of this prospect is 

  82)82()82(] 2
1

2
1 =+=CPE[  

The variance of this prospect is 

  0)8282()8282(][ 2
2
12

2
12 =−+−=CPσ  

This prospect has no risk at all. 
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Risk vs. Reward 

Prospects are sometimes compared on the basis of their “risk-to-reward ratio”, defined as 

(6.22)  
μ
σρ =  

where σ  is the standard deviation of the prospect, and μ  is its expected value. 

For the three examples above: 2195.0=Aρ ; 6917.0=Bρ ; and 0=Cρ . Note that 

prospect B has a higher expected value than prospect A, but the latter has a lower risk-to-

reward ratio. 

 

 

6.4 EXPECTED UTILITY THEORY 

A more general approach to comparing prospects is to assess their expected utility from 

the perspective of the agent facing those prospects. 

 

The expected utility of a prospect is the probability-weighted sum of the IUF values 

associated with each possible realization of the prospect: 

(6.23)  ∑
=

=
n

i
ii mvmv

1
)()]( πE[  

 

Expected utility theory asserts that when people can choose among alternative 

prospects, they will choose the prospect that yields the highest expected utility. That is, 

economic agents are expected-utility-maximizers. 

 

Example 

Suppose an agent has the IUF from section 6.2: 

  θmpbmv )()( =  

and suppose he can choose between prospects AP  and CP  from section 6.3: 

  },;64,100{ 2
1

2
1=AP  

  },;82,82{ 2
1

2
1=CP  

 



Kennedy: Intermediate Microeconomics 2 

 8

His expected utility from AP  is        

  ⎟
⎠
⎞

⎜
⎝
⎛ +=+= θθθθ )64(

2
1)100(

2
1)()64)((

2
1)100)((

2
1)]( pbpbpbmv AE[  

 

Note that )( pb  can be taken outside the brackets because this term is the same in all 

states of nature (because prices are not subject to uncertainty in this prospect).  

 

His expected utility from CP  is 

  θθθ )82)(()82)((
2
1)82)((

2
1)]( pbpbpbmv C =+=E[  

Again note that )( pb  can be taken outside the brackets because this term is the same in 

all states of nature. This in turn means that the ranking of the two prospects (which differ 

only in their wealth outcomes) does not depend on )( pb  at all.  

 

This irrelevance of prices in the ranking of prospects over wealth is not a general result 

but it holds for a class of utility functions called homothetic functions. 

 

Homothetic Utility Functions 

We will not pursue the details here, but the key property of homothetic utility functions is 

that they give rise to demand functions that are linear in income, like those in (6.10) – 

(6.12) above. The Cobb-Douglas function is a member of this homothetic function 

family. 

 

For pedagogical purposes it is helpful to confine consideration to the homothetic-family 

case, otherwise the mathematics can become so complicated that it can distract from the 

key economic ideas of interest. Moreover, if we restrict our analysis in this way then we 

can make a helpful normalization that imposes no further restrictions on our results but 

simplifies how we get to those results. In particular, we can set 1)( =pb  by implicitly 

choosing a numeraire price that effectively forces the term in (6.15) to be exactly one.  
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This means that if we work with homothetic utility functions, then we can effectively 

specify the IUF as 

(6.24)  θmmv =)(  

and still capture most of the important aspects of choice under uncertainty provided that 

uncertainty relates to wealth and not prices. With this assumption in place, let us revisit 

the example and consider the choice between prospects. 

 

Example Revisited 

Recall the two prospects: 

  },;64,100{ 2
1

2
1=AP  

  },;82,82{ 2
1

2
1=CP  

These two prospects have the same expected value: 

  82)64()100(] 2
1

2
1 =+=APE[  

  82)82()82(] 2
1

2
1 =+=CPE[  

but AP  has a higher variance.  

 

Using the IUF from (6.24), the agent’s expected utility from AP  is  

 θθ )64(
2
1)100(

2
1)]( +=AmvE[  

 

and his expected utility from CP  is   

  θ)82()]( =CmvE[  

 

Comparing these expected utilities in terms of θ  reveals the following: 

• if 1<θ  then )]()]( CA mvmv E[E[ <  

• if 1=θ  then )]()]( CA mvmv E[E[ =  

• if 1>θ  then )]()]( CA mvmv E[E[ >  
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6.5 ATTITUDES TOWARDS RISK 

Why is the size of θ  so important here? Recall from section 6.2 that the size of θ  

relative to one determines the curvature of the IUF. This curvature embodies the attitude 

of this agent toward risk: 

 

• if )(mv  is strictly concave in m then the agent is risk averse: if two prospects have 

the same expected value, he prefers the one with the lowest variance. 

• if )(mv  is linear in m then the agent is risk neutral: if two prospects have the same 

expected value, he is indifferent between them regardless of their relative variance. 

• if )(mv  is strictly convex in m then the agent is risk loving: if two prospects have the 

same expected value, he prefers the one with the highest variance. 

 

Let us calculate the expected utility of prospects AP  and CP  for three different values of 

θ , corresponding to the three possible attitudes towards risk. 

 

Risk Averse 

 Suppose 2
1=θ , then 

  9)64(
2
1)100(

2
1)]( 2

1
2
1

=+=AmvE[     and    055.9)82()]( 2
1

==CmvE[  

Thus, the agent prefers CP  to AP . This case is illustrated in Figure 6-4. 

 

Risk Neutral 

Suppose 1=θ , then 

  82)64(
2
1)100(

2
1)]( 11 =+=AmvE[     and    82)82()]( 1 ==CmvE[  

Thus, the agent is indifferent between CP  and AP . This case is illustrated in Figure 6-5. 
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Risk Loving 

Suppose 2
3=θ , then 

  756)64(
2
1)100(

2
1)]( 2

3
2
3

=+=AmvE[     and    45.742)82()]( 2
3

==CmvE[  

Thus, the agent prefers AP  to CP . This case is illustrated in Figure 6-6. 

 

In each of these three cases, we are comparing two prospects that have the same expected 

value, and the attitude towards risk determines which one is preferred. This leads us to 

the following more general characterization of risk attitudes.  

 

For a risk averse agent: 

  ])E[()](E[ mvmv <  

That is, for a risk-averse agent, the expected utility of a prospect is less than the utility of 

the expected value of that prospect. 

 

For a risk neutral  agent: 

  ])E[()](E[ mvmv =  

That is, for a risk-neutral agent, the expected utility of a prospect is equal to the utility of 

the expected value of that prospect. 

 

For a risk loving agent: 

  )]E[(]E[ mvv(m) >  

That is, for a risk-loving agent, the expected utility of a prospect is greater than the utility 

of the expected value of that prospect. 

 

Empirical evidence indicates that most people are risk averse. (Some people have a 

penchant for high-risk activities like high-speed motorcycling but typically it is the 

adrenaline rush they enjoy, not the risk per se). We will henceforth focus primarily on the 

risk-averse case. 
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6.6 CERTAINTY-EQUIVALENT WEALTH AND THE RISK PREMIUM 

Suppose an agent faces the uncertain prospect  

  },;64,100{ 2
1

2
1=AP  

but is offered a certain prospect 

  }1,;,{ ππ −= mmPD  

instead. What value of m  would make this agent just indifferent between AP  and DP ? 

 

The value of m that makes the agent indifferent between AP  and DP  is called the 

certainty-equivalent wealth associated with prospect AP . 

 

Example 

Consider an example where the agent has IUF given by 2
1

)( mmv =  . 

 

We know that the expected utility from AP  is 

  9)64(
2
1)100(

2
1)]( 2

1
2
1

=+=AmvE[  

 

In comparison, the expected utility from the certain prospect is 

  2
1

)()]( mmvmv DD ==E[  

 

The certainty-equivalent wealth is m̂  such that )]([)]( AD mvmv EE[ = . Thus, m̂  is the 

solution to 

  9ˆ 2
1

=m  

That is, 81ˆ =m . 

 

Note the certainty-equivalent wealth associated with AP  is less than the expected value of 

AP , which is 

  82)64()100(] 2
1

2
1 =+=mE[  
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The difference between these two values is called the risk premium associated with 

prospect, denoted R. That is, 

  mmR ˆ]−= E[  

 

In the example, 18182 =−=R .  

 

In general, for the agent to be indifferent between an uncertain prospect and a certain 

prospect with value m̂ , the uncertain prospect must have an associated expected value of 

Rm +ˆ , where R is the premium required to compensate for the risk.   

 

The size and sign of R for any given prospect naturally depends on the risk attitude of the 

agent facing that prospect. In particular, if the agent is  

• risk averse, then 0>R  

• risk neutral, then 0=R  

• risk loving, then 0<R  

 

Figure 6-7 illustrates the risk premium for a prospect },;,{ 2
1

2
1

21 mmP =  for a risk-averse 

agent. Note that we can usefully indentify )](mvE[  as the value on a chord below the IUF 

evaluated at ]mE[ . Why? This linear segment tells us how a risk-neutral agent would 

view this prospect, and a for a risk-neutral agent we know that ])E[()](E[ mvmv =  

 

 

6.7 AN APPLICATION: THE DEMAND FOR INSURANCE 

Suppose an agent has current wealth m but with probability π  she will suffer a loss L.  

She therefore faces an uncertain prospect: 

  { }ππ ,1;, −−= LmmP  

 

Suppose further that she can buy insurance against loss at price r per dollar of coverage c.  

How much insurance will she buy? 
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We can think of her choice problem as one of choosing one prospect from a schedule of 

prospects: 

  { }ππ ,1;,)( −+−−−= cLrcmrcmcP  

and she makes that choice to maximize her expected utility: 

  )()1()(max rcmvcLrcmv
c

−−++−− ππ  

 

Example 

Suppose the agent has IUF given by 2
1

)( mmv = . She has current wealth $6300 but faces a 

loss of $6000 with probability 4
1 . She can purchase insurance against that loss at a price 

of 2
1=r  per dollar of coverage. Then her choice problem is 

  2
1

2
1

4
32

1

2
1

4
1 )6300()60006300(max ccc

c
−++−−  

Differentiate with respect to c and set this equal to zero: 

  0)()6300()1()60006300( 2
12

1

2
1

8
3

2
12

1

2
1

8
1 =−−++−+−−

−−
ccc  

 

Multiply both sides by 16 and rearrange the equation to obtain 

  2
1

2
12

1

2
1 )6300(3)60006300(

−−
−=+−− ccc  

 

We can then square both sides and solve the resulting equation for 

  720* =c  

 

That is, the agent buys $720 of coverage. Note this is far less than the size of the potential 

loss she faces; she is heavily under-insured. 

 

Now let us calculate the expected profit made by the insurance company from this policy: 

  crrccrc )()1()( πππ −=−+−=E[profit]  

       720)( 4
1

2
1 −=  

       180=  
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Suppose this insurance market is now opened up to competition, and companies compete 

for the agent’s business until expected profit is driven to zero. 

 

The zero-profit insurance price is π=r . This is called the actuarially-fair price because 

it accurately reflects the probability of a payout. 

 

How much insurance will the agent buy if she is charged the actuarially-fair price?  

 

At price 4
1=r  her choice problem is now 

  2
1

4
1

4
32

1

4
1

4
1 )6300()60006300(max ccc

c
−++−−  

 

Solving this problem using the same procedure we used above yields 

  6000* =c  

That is, she buys full insurance: her coverage will exactly cover her loss. 

 

The Relationship Between the Risk Premium and the Demand for Insurance 

Suppose a person is offered full insurance against a loss L at price r per dollar of 

coverage. Her total premium will be rLT = . 

 

What is the maximum total premium she would be willing to pay for full insurance, 

denoted T̂ ? 

 

We can calculate this as the solution to an indifference equation, in the same way we did 

to calculate the certainty-equivalent wealth.  

 

Her expected utility without insurance is 

  )()1()(][ 0 mvLmvv ππ −+−=E  

and her expected utility with full insurance is 

  )()()1()(][ TmvTmvTmvvF −=−−+−= ππE  
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We can find her maximum WTP for full insurance as the solution to ][][ 0 Fvv EE = : 

  )ˆ()()1()( TmvmvLmv −=−+− ππ  

 

This is precisely the same indifference equation that defines the certainty-equivalent 

wealth. That is, Tm ˆ−  is the certainty-equivalent wealth associated with the uninsured 

prospect.  

 

Moreover, we know that the risk premium for a prospect is by definition equal to the 

difference between expected wealth and the certainty-equivalent wealth. Thus, in this 

setting 

  )ˆ())1()(( TmmLmR −−−+−= ππ  

and this reduces to 

  LTR π−= ˆ  

Thus,  

  RLT += πˆ  

 

That is, the maximum total premium this person is willing to pay for full insurance is the 

expected loss plus the risk premium. For a risk neutral person, the risk premium is zero. 

 

 

Implications of Asymmetric Information 

Note that we have assumed here that the agent cannot influence π  or L by taking a 

precautionary action, and that the insurance company can observe π  and set an 

actuarially-fair price accordingly. 

 

In practice, neither of these simplifying assumptions are likely to be satisfied. When we 

relax those assumptions, we introduce the possibility of moral hazard and adverse 

selection. These relate to asymmetric information about actions and characteristics 

respectively. They are the subject of our next topic. 
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:1<θ is strictly concave in m)(mv

 
 

Figure 6-1 
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:1=θ is linear in m)(mv

 
 

Figure 6-2 



Kennedy: Intermediate Microeconomics 2 

 19

 

 

 

 

 

m

v

)(mv
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Figure 6-3 
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A risk-averse agent

 
 

Figure 6-4 
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Figure 6-5 
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Figure 6-6 
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Figure 6-7 

 

 

 


