TOPIC 7 REVIEW QUESTIONS

Questions 1 – 4 relate to the following information.

Consider a product of quality q. Suppose the seller values the product at $\theta_s q$ and the potential buyer values it at $\theta_B q$. Assume $\theta_B = \frac{5}{2}$ and $\theta_S = 2$.

The seller knows q, but the buyer does not. The buyer knows θ_s .

The potential buyer has prior beliefs about q represented by a uniform distribution on the interval [3, 12].

1. If the product is offered for sale at price *p*, what is the conditional expected quality of the good as perceived by the buyer?

A. $\hat{q}(p) = \frac{3p+3}{4}$ B. $\hat{q}(p) = \frac{p}{4} + \frac{3}{2}$ C. $\hat{q}(p) = \frac{3p}{8}$ D. $\hat{q}(p) = \frac{2p}{3} + 3$

2. The highest price that the buyer is willing to pay for a product offered for sale is

- A. 8
- **B**. 10
- C. 12
- D. 3

3. The highest quality product that could be traded in this market is

- A. 5
- B. 7.5
- C. 8
- D. 12

4. The average quality of a product traded in this market is

- A. 3
- B. 6
- C. 2
- D. 4

Questions 5 – 8 relate to the following information.

Consider a product of quality q. Suppose the seller values the product at $\theta_s q$ and the potential buyer values it at $\theta_B q$. Assume $\theta_B = 3$ and $\theta_s = 2$.

The seller knows q, but the buyer does not. The buyer knows θ_s .

The potential buyer has prior beliefs about q represented by a uniform distribution on the interval [1, 10].

5. If the product is offered for sale at price *p*, what is the conditional expected quality of the good as perceived by the buyer?

A. $\hat{q}(p) = \frac{p+3}{4}$ B. $\hat{q}(p) = \frac{2p}{5}$ C. $\hat{q}(p) = \frac{p}{4} + \frac{1}{2}$ D. $\hat{q}(p) = \frac{3p}{2} + \frac{1}{2}$ 6. The highest price that the buyer is willing to pay for a product offered for sale is

- A. 8
- B. 6
- C. 4
- D. 3

7. The highest quality product that could be traded in this market is

- A. 3
- B. 5.5
- C. 4
- D. 8

8. The average quality of a product traded in this market is

- A. 4
- B. 3
- C. 6
- D. 2

Questions 9 – 13 relate to the following information.

Consider a situation where a worker obtains education level e and demands wage w from the employer. The firm accepts or refuses the demanded wage. Assume that education has no productivity effect.

The worker is one of two types: high productivity (*H*) or low productivity (*L*). The firm knows the true population distribution of workers. In particular, a fraction α of workers are of type *L*, and a fraction $1-\alpha$ are of type *H*.

For the worker, the cost of obtaining education level e is correlated with her productivity. In particular, the effort cost of education level e is

$$c = \frac{e}{\lambda + t}$$

where t = L or t = H, and $\lambda \ge 0$ is a parameter common to both types. The net payoff to a worker of type *t* who obtains education level *e* and receives wage *w* is

$$u = w - \frac{e}{\lambda + t}$$

Assume that H = 5, L = 2 and $\lambda = 2$.

9. The payoff to the *H* type in a pooling equilibrium is

A.
$$u^{P} = 3 - 2\alpha$$

B. $u^{P} = 5$
C. $u^{P} = 5 - 3\alpha$
D. $u^{P} = 2$

10. The payoff to the H type in a separating equilibrium in which she chooses education level e is

A. $u^{H} = 2 - \frac{e}{3}$ B. $u^{H} = 5 - \frac{e}{7}$ C. $u^{H} = 2 - \frac{e}{3\alpha}$ D. $u^{H} = 5 - \frac{e}{3\alpha}$

11. The incentive compatibility condition for the L type is

A.
$$\frac{e}{4} - 3 \ge 0$$

B. $3 - \frac{e}{7} \ge 0$
C. $w \ge 2$
D. $w - e \ge 2$
12. The smallest value of *e* with which the *H* type can signal her true productivity is
A. $\hat{e} = 21$

- B. $\hat{e} = 12$
- C. $\hat{e} = 8$
- D. $\hat{e} = 3$

13. The *H* type will choose to signal her true productivity if and only if

A.
$$\alpha < \frac{2}{3}$$

B. $\alpha > \frac{2}{5}$
C. $\alpha < \frac{3}{7}$
D. $\alpha > \frac{4}{7}$

Questions 14 – 18 relate to the following information.

Consider a situation where a worker obtains education level e and demands wage w from the employer. The firm accepts or refuses the demanded wage. Assume that education has no productivity effect.

The worker is one of two types: high productivity (*H*) or low productivity (*L*). The firm knows the true population distribution of workers. In particular, a fraction α of workers are of type *L*, and a fraction $1-\alpha$ are of type *H*.

For the worker, the cost of obtaining education level e is correlated with his productivity. In particular, the effort cost of education level e is

$$c = \frac{e}{\lambda + t}$$

where t = L or t = H, and $\lambda \ge 0$ is a parameter common to both types. The net payoff to a worker of type *t* who obtains education level *e* and receives wage *w* is

$$u = w - \frac{e}{\lambda + t}$$

Assume that H = 3, L = 2 and $\lambda = 1$.

14. The payoff to the *L* type in a pooling equilibrium is

A. $u^{P} = 3 - 2\alpha$ B. $u^{P} = 3 + \alpha$ C. $u^{P} = 2 - \alpha$ D. $u^{P} = 3 - \alpha$

15. The payoff to the H type in a separating equilibrium in which he chooses education level e is

A. $u^{H} = 2 - \frac{2e}{3}$ B. $u^{H} = 3 - \frac{e}{4}$ C. $u^{H} = 5 - \frac{e}{3\alpha}$ D. $u^{H} = 7 - \frac{e}{3\alpha}$

16. The incentive compatibility condition for the *L* type is

A. $\frac{e}{3} - 1 \ge 0$ B. $3 - \frac{e}{2} \ge 0$ C. $\frac{e}{2} - 1 \ge 0$ D. $2 - \frac{e}{3} \ge 0$ 17. The smallest value of e with which the H type can signal his true productivity is

- A. $\hat{e} = 10$
- B. $\hat{e} = 8$
- C. $\hat{e} = 3$
- D. $\hat{e} = 2$

18. The *H* type will choose to signal his true productivity if and only if

A. $\alpha > \frac{3}{4}$ B. $\alpha < \frac{2}{3}$ C. $\alpha < \frac{3}{4}$ D. $\alpha > \frac{1}{2}$

Questions 19 – 22 relate to the following information.

Suppose an agent has wealth *m* in the good state, and wealth m - L if an accident occurs (the bad state). Let $\pi(e)$ denote the probability of an accident as a function of precautionary effort *e*:

$$\pi(e) = \frac{1}{1+e}$$

His indirect utility function is

$$v(m,e) = m^{\frac{1}{2}} - \delta e$$

where δe is the utility-cost of effort. Assume that m = 10000, L = 1719 and $\delta = \frac{1}{9}$.

19. If this agent has no insurance then he will choose effort level

A. $e^* = 2$ B. $e^* = 3$ C. $e^* = 4$ D. $e^* = 8$

20. If this agent has no insurance then his expected loss is

- A. $\pi^* L = 191$
- B. $\pi^* L = 343.8$
- C. $\pi^* L = 429.75$
- D. $\pi^* L = 573$

21. If this agent purchases full insurance with no deductible then the expected payout by the insurer is

- A. 0
- B. 573
- C. 1719
- D. 8281

22. The "second-best solution" to the moral hazard problem here is

- A. no insurance.
- B. full insurance at the actuarially-fair price.
- C. co-insurance, where the insured agent pays a deductible in the event of a claim.****
- D. full insurance but at a price higher than the actuarially-fair price.

Questions 23 – 25 relate to the following information.

Suppose an agent has wealth *m* in the good state, and wealth m - L if an accident occurs (the bad state). Let $\pi(e)$ denote the probability of an accident as a function of precautionary effort *e*:

$$\pi(e) = \frac{1}{1+e}$$

Her indirect utility function is

$$v(m,e) = m^{\frac{1}{2}} - \delta e$$

where δe is the utility-cost of effort. Assume that m = 10000, L = 2944 and $\delta = \frac{1}{4}$.

23. If this agent has no insurance then she will choose effort level

- A. $e^* = 1$ B. $e^* = 3$ C. $e^* = 7$ D. $e^* = 15$
- 24. If this agent has no insurance then her expected loss is
- A. $\pi^* L = 184$
- B. $\pi^* L = 368$
- C. $\pi^* L = 736$
- D. $\pi^* L = 1472$

25. If this agent purchases full insurance with no deductible then the expected payout by the insurer is

- A. 368
- B. 736
- C. 1472
- D. None of the above.

ANSWER KEY

- 1. B
- 2. B
- 3. A
- 4. D
- 5. C
- 6. B
- 7. A
- 8. D
- 9. C
- 10. B
- 11. A
- 12. B
- 13. D
- 14. D
- 15. B
- 16. A
- 17. C
- 18. A
- 19. D
- 20. A
- 21. C
- 22. C
- 23. C
- 24. B
- 25. D