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Answer to Question 1 

(a) The certainty-equivalent wealth is the solution to an indifference equation: 
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In this case, 
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where y is her salary without loss. 

 

The solution for m̂  is messy but it is simple to solve with the numerical values in place:  
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Expected wealth is 
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For the values in the Question: 4800] =mE[  

 

The risk premium is 
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For the values in the Question: 96.721=R . (Prices are irrelevant here). 

 

(b) Expected utility with insurance is  
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Differentiate with respect to q and solve to yield )(rq . The solution is messy but it is 

simple to solve with the numerical values in place. For 4
1=π  and 2

1=r ,  

  720)( =rq  

That is, less than full insurance, because the price is not actuarially fair. 
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Answer to Question 2 

(a) See Figure  A2-1. This agent always chooses 21 cc β=  regardless of r. She is a lender 

in period 1 iff 11 yc < , in which case her income profile must be at a point like A in 

Figure A2-1, below the dashed 21 cc β=  threshold. In that region, 21 yy β> .  Conversely, 

she is a borrower in period 1 iff 11 yc > , in which case her income profile must be at a 

point like B in Figure 1, above the dashed 21 cc β=  threshold. In that region, 21 yy β< .   

 

This simple logic yields the answer in this example only because of the Leontief 

preferences. For less rigid preferences, it is necessary to solve for the consumption 

functions, and derive a condition under which 11 yc > . Let us confirm that this approach 

yields the same answer we have derived above.  The utility maximization problem is  
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where 
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1  and 21 pyyw += . Setting 21 cc β=  and substituting into the wealth 

constraint yields the solution for 1c : 
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Make the substitution for w (but leave p as is) and rearrange. We then obtain 11 yc <  iff 

21 yy β> .  This is the same result we derived above. 

 

 (b) False. This is not a homogenous production function. In particular,  

)(log)(loglog)log()log()( 2121 xfttbaxbxatxbtxatxf k≠+++=+=  

for any t or k. This production function does not exhibit any of DRS, CRS or IRS. It has 

U-shaped AC because 0=y  at 11 =x  and 12 =x . Thus, there is a quasi-fixed cost of 

)( 21 ww + . 
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Answer to Question 3 

(a) At any prices, cost is minimized where 21 xx = . Thus, the conditional demands are 

simply given by 

yywx =),(1  

yywx =),(2  

  The cost function is 
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(b) Set up the direct profit maximization problem: 
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The FOCs yield the input demands: 
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The supply function is  
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and the profit function is 
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FIGURE A2-1
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