Answer to Question 1

(a) The certainty-equivalent wealth is the solution to an indifference equation:

$$
v(\hat{m})=\mathrm{E}[v(m)]
$$

In this case,

$$
\begin{aligned}
& v(\hat{m})=\hat{m}^{\frac{1}{2}} \\
& \mathbf{E}[v(m)]=\pi(y-L)^{\frac{1}{2}}+(1-\pi)(y)^{\frac{1}{2}}
\end{aligned}
$$

where y is her salary without loss.

The solution for \hat{m} is messy but it is simple to solve with the numerical values in place:

$$
\hat{m}=4078.04
$$

Expected wealth is

$$
\mathbf{E}[m]=\pi(y-L)+(1-\pi) y
$$

For the values in the Question: $\mathbf{E}[m]=4800$

The risk premium is

$$
R \equiv \mathrm{E}[m]-\hat{m}
$$

For the values in the Question: $R=721.96$. (Prices are irrelevant here).
(b) Expected utility with insurance is

$$
\mathbf{E}[v(m ; q)]=\pi(y-L-r q+q)^{\frac{1}{2}}+(1-\pi)(y-r q)^{\frac{1}{2}}
$$

Differentiate with respect to q and solve to yield $q(r)$. The solution is messy but it is simple to solve with the numerical values in place. For $\pi=\frac{1}{4}$ and $r=\frac{1}{2}$,

$$
q(r)=720
$$

That is, less than full insurance, because the price is not actuarially fair.

Answer to Question 2

(a) See Figure A2-1. This agent always chooses $c_{1}=\beta c_{2}$ regardless of r. She is a lender in period 1 iff $c_{1}<y_{1}$, in which case her income profile must be at a point like A in Figure A2-1, below the dashed $c_{1}=\beta c_{2}$ threshold. In that region, $y_{1}>\beta y_{2}$. Conversely, she is a borrower in period 1 iff $c_{1}>y_{1}$, in which case her income profile must be at a point like B in Figure 1, above the dashed $c_{1}=\beta c_{2}$ threshold. In that region, $y_{1}<\beta y_{2}$.

This simple logic yields the answer in this example only because of the Leontief preferences. For less rigid preferences, it is necessary to solve for the consumption functions, and derive a condition under which $c_{1}>y_{1}$. Let us confirm that this approach yields the same answer we have derived above. The utility maximization problem is

$$
\max _{c} \min \left[c_{1}, \beta c_{2}\right] \text { st } c_{1}+p c_{2}=w
$$

where $p=\frac{1}{1+r}$ and $w=y_{1}+p y_{2}$. Setting $c_{1}=\beta c_{2}$ and substituting into the wealth constraint yields the solution for c_{1} :

$$
c_{1}(w, r)=\frac{\beta w}{\beta+p}
$$

Make the substitution for w (but leave p as is) and rearrange. We then obtain $c_{1}<y_{1}$ iff $y_{1}>\beta y_{2}$. This is the same result we derived above.
(b) False. This is not a homogenous production function. In particular,

$$
f(t x)=a \log \left(t x_{1}\right)+b \log \left(t x_{2}\right)=a \log x_{1}+b \log x_{2}+(a+b) \log t \neq t^{k} f(x)
$$

for any t or k. This production function does not exhibit any of DRS, CRS or IRS. It has U-shaped AC because $y=0$ at $x_{1}=1$ and $x_{2}=1$. Thus, there is a quasi-fixed cost of $\left(w_{1}+w_{2}\right)$.

Answer to Question 3

(a) At any prices, cost is minimized where $x_{1}=x_{2}$. Thus, the conditional demands are simply given by

$$
\begin{aligned}
& x_{1}(w, y)=y \\
& x_{2}(w, y)=y
\end{aligned}
$$

The cost function is

$$
c(w, y)=w_{1} x_{1}(w, y)+w_{2} x_{2}(w, y)=y\left(w_{1}+w_{2}\right)
$$

SL: $\frac{\partial c(w, y)}{\partial w_{i}}=x_{i}(w, y)=y$
(b) Set up the direct profit maximization problem:

$$
\max _{x} p\left[x_{1}^{1 / 2}+x_{2}^{1 / 2}\right]-w_{1} x_{1}-w_{2} x_{2}
$$

The FOCs yield the input demands:

$$
x_{1}(p, w)=\left(\frac{p}{2 w_{1}}\right)^{2} \text { and } x_{2}(p, w)=\left(\frac{p}{2 w_{2}}\right)^{2}
$$

The supply function is

$$
y(p, w)=f\left(x_{1}(p, w), x_{2}(p, w)\right)=\left(\frac{p}{2 w_{1}}\right)+\left(\frac{p}{2 w_{2}}\right)=p\left(\frac{w_{1}+w_{2}}{2 w_{1} w_{2}}\right)
$$

and the profit function is

$$
\pi(p, w)=p y(p, w)-w_{1} x_{1}(p, w)-w_{2} x_{2}(p, w)=p^{2}\left(\frac{w_{1}+w_{2}}{4 w_{1} w_{2}}\right)
$$

HL: $\frac{\partial \pi(p, w)}{\partial p}=y(p, w)$ and $\frac{\partial \pi(p, w)}{\partial v_{i}}=-x_{i}(p, w)$.

FIGURE A2-1

