MICROECONOMIC THEORY
 PRACTICE MIDTERM
 ANSWER GUIDE

Answer to Question 1

(a) Set up the Lagrangean

$$
L=x_{1}^{1 / 3}+x_{2}^{1 / 3}+\lambda\left(m-p_{1} x_{1}-p_{2} x_{2}\right)
$$

and derive the FOCs:

$$
\frac{1}{3 x_{i}^{2 / 3}}=\lambda p_{i}
$$

Take the ratio for $i=1,2$ to obtain the tangency condition:

$$
\left(\frac{x_{2}}{x_{1}}\right)^{2 / 3}=\frac{p_{1}}{p_{2}}
$$

which can be rearranged to obtain

$$
x_{2}=\left(\frac{p_{1}}{p_{2}}\right)^{3 / 2} x_{1}
$$

Substitute this expression into the budget constraint and solve for x_{1} :

$$
x_{1}(p, m)=\frac{m}{p_{1}\left(1+\frac{p_{1}^{1 / 2}}{p_{2}^{1 / 2}}\right)}
$$

The expression for $x_{2}(p, m)$ follows by symmetry of the utility function.

To simplify notation, write the Marshallian demands as

$$
\begin{aligned}
& x_{1}(p, m)=\omega_{1}\left(p_{1}, p_{2}\right) m \\
& x_{2}(p, m)=\omega_{2}\left(p_{1}, p_{2}\right) m
\end{aligned}
$$

Note that these are linear in income because the preferences are homothetic.
(b) Substitute the Marshallian demands into the utility function to derive the indirect utility function:

$$
v(p, m)=\left(\omega_{1}^{1 / 3}+\omega_{2}^{1 / 3}\right) m^{1 / 3}
$$

Then set $v(p, m)=u$ and $m=e(p, u)$, and solve for $e(p, u)$ to obtain

$$
e(p, u)=\left(\frac{u}{\omega_{1}^{1 / 3}+\omega_{2}^{1 / 3}}\right)^{3}
$$

(c) There are three alternative ways to approach this. The most elegant approach is to use the cross-price Slutsky equation:

$$
\frac{\partial x_{i}}{\partial p_{j}}=\frac{\partial \partial_{i}}{\partial p_{j}}-x_{j} \frac{\partial x_{i}}{\partial m}
$$

which can be arranged (with $i=1$ and $j=2$) as

$$
\frac{\partial{h_{1}}_{1}}{\partial p_{2}}=\frac{\partial x_{1}}{\partial p_{2}}+x_{2} \frac{\partial x_{1}}{\partial m}=\frac{\partial \omega_{1}}{\partial p_{2}} m+\omega_{2} m \omega_{1}
$$

Alternatively, begin with the duality property of the consumer problem (from which the Slutsky equation is derived):

$$
h_{i}(p, u)=x_{i}(p, e(p, u))
$$

and differentiate with respect to p_{j}. The least elegant approach is to use brute force: invoke Shephard's lemma and differentiate $e(p, u)$ with respect to p_{i} and then with respect to p_{j}.

Answer to Question 2

Roy's identity:

$$
\begin{aligned}
x_{i}(p, m) & =\frac{-\partial / \partial p_{i}}{\partial / \partial m} \\
\Rightarrow \quad x_{i}(p, m) & =\frac{m p_{j}}{p_{i}\left(p_{i}+p_{j}\right)} \\
\therefore \quad x_{1}(p, m) & =\frac{m p_{2}}{p_{1}\left(p_{1}+p_{2}\right)} \text { and } x_{2}(p, m)=\frac{m p_{1}}{p_{2}\left(p_{2}+p_{1}\right)}
\end{aligned}
$$

A luxury good is one for which $\eta_{i}>1$, where

$$
\eta_{i}=\left(\frac{\partial x_{i}}{\partial m}\right)\left(\frac{m}{x_{i}}\right)
$$

In this case, $\eta_{1}=1$. Thus, x_{1} is not a luxury.
The demand for x_{1} is price-inelastic if $\left|\varepsilon_{11}\right|<1$, where

$$
\varepsilon_{11}=\left(\frac{\partial x_{1}}{\partial p_{1}}\right)\left(\frac{p_{1}}{x_{1}}\right)
$$

In this case,

$$
\left|\varepsilon_{11}\right|=\frac{2 p_{1}+p_{2}}{p_{1}+p_{2}}>1 \text { at positive prices. }
$$

(b) Invert the indirect utility function:

$$
e(p, u)=\frac{p_{1} p_{2} u^{2}}{\left(p_{1}+p_{2}\right)}
$$

Then by Shephard's lemma:

$$
\begin{aligned}
x_{i}(p, u) & =\frac{\partial e(p, u)}{\partial p_{i}} \\
\therefore \quad x_{1}(p, u) & =u^{2}\left(\frac{p_{2}}{p_{1}+p_{2}}\right)^{2}
\end{aligned}
$$

and

$$
x_{2}(p, u)=u^{2}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)^{2}
$$

(c) They are substitutes:

$$
\frac{\partial x_{i}(p, m)}{\partial p_{j}}=\frac{m}{\left(p_{i}+p_{j}\right)^{2}}>0
$$

Answer to Question 3

(a) This is simpler to solve if $u(x)$ is first transformed to

$$
u(x)=x_{1} x_{2}
$$

Set up the expenditure minimization problem:

$$
\min _{x} p_{1} x_{1}+p_{2} x_{2} \text { s.t. } x_{1} x_{2}=u
$$

The FOCs yield the tangency condition:

$$
\frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}
$$

The constraint is then used to solve for Hicksian demands:

$$
\begin{aligned}
& h_{1}(p, u)=\left(\frac{u p_{2}}{p_{1}}\right)^{1 / 2} \\
& h_{2}(p, u)=\left(\frac{u p_{1}}{p_{2}}\right)^{1 / 2}
\end{aligned}
$$

The expenditure function is

$$
e(p, u)=p_{1} h_{1}(p, u)+p_{2} h_{2}(p, u)=2\left(u p_{1} p_{2}\right)^{1 / 2}
$$

(b) Since we transformed the utility function to find the expenditure function in part (a), we must also transform the utility function to solve the utility maximization problem, otherwise the indirect utility function we derive will not be consistent with the "units" in which utility is measured in the expenditure function. This will in turn complicate the interpretation of the units in which EV and CV are measured.

Set up the utility maximization problem:

$$
\max _{x} x_{1} x_{2} \text { s.t } p_{1} x_{1}+p_{2} x_{2}=m
$$

The FOCs yield the tangency condition:

$$
\frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}
$$

The constraint is then used to solve for Marshallian demands:

$$
\begin{aligned}
& x_{1}(p, u)=\frac{m}{2 p_{1}} \\
& x_{2}(p, u)=\frac{m}{2 p_{2}}
\end{aligned}
$$

The indirect utility function is

$$
v(p, m)=x_{1}(p, m) \cdot x_{2}(p . m)=\frac{m^{2}}{4 p_{1} p_{2}}
$$

Note that this is convex in p. (The Hessian matrix is positive definite)
(c) (i) To summarize: $m=10,\left\{p_{1}^{0}, p_{2}^{0}\right\}=\{1,1\}$ and $\left\{p_{1}^{1}, p_{2}^{1}\right\}=\{2,1\}$

Compensating variation:

$$
C V=m-e\left(p^{1}, u^{0}\right)=m-e\left(p^{1}, v\left(p^{0}, m\right)\right)
$$

where we use $v(p, m)$ evaluated at p^{0} to find u^{0}. In particular,

$$
v\left(p^{0}, m\right)=\frac{10^{2}}{4}=25
$$

Thus,

$$
C V=10-2(25 \cdot 2 \cdot 1)^{1 / 2}=-4.14
$$

Equivalent variation:

$$
E V=e\left(p^{0}, u^{1}\right)-m=e\left(p^{0}, v\left(p^{1}, m\right)\right)-m
$$

where we use $v(p, m)$ evaluated at p^{1} to find u^{1}. In particular,

$$
v\left(p^{1}, m\right)=\frac{10^{2}}{8}=12.5
$$

Thus,

$$
E V=2(12.5 \cdot 1 \cdot 1)^{1 / 2}-10=-2.93
$$

(ii) Change in consumer surplus:

$$
\Delta C S=\int_{p_{1}^{1}}^{p_{1}^{0}} x_{1}(p, m) d p_{1}
$$

In this case,

$$
\Delta C S=\int_{p_{1}^{1}}^{p_{1}^{0}}\left(\frac{m}{2 p_{1}}\right) d p_{1}=\frac{m}{2}\left[\log \left(p_{1}\right)\right]_{2}^{1}=5[\log (1)-\log (2)]=-5 \log (2)=-3.47
$$

Thus, we have $|C V|>|\Delta C S|>|E V|$, as expected for a price rise for a normal good.

