MICROECONOMIC THEORY
 PRACTICE FIRST MIDTERM EXAM

QUESTION 1

A consumer has the following utility function:

$$
u(x)=x_{1}^{1 / 3}+x_{2}^{1 / 3}
$$

(a) Show that the Marshallian demands are given by

$$
\begin{aligned}
& x_{1}(p, m)=\frac{m}{p_{1}\left(1+\frac{p_{1}^{1 / 2}}{p_{2}^{1 / 2}}\right)} \\
& x_{2}(p, m)=\frac{m}{p_{2}\left(1+\frac{p_{2}^{1 / 2}}{p_{1}^{1 / 2}}\right)}
\end{aligned}
$$

To simplify notation from this point forward, write these Marshallian demands as

$$
\begin{aligned}
& x_{1}(p, m)=\omega_{1}\left(p_{1}, p_{2}\right) m \\
& x_{2}(p, m)=\omega_{2}\left(p_{1}, p_{2}\right) m
\end{aligned}
$$

(b) Derive the expenditure function.
(c) Let $h_{1}(p, u)$ denote the Hicksian demand for x_{1}. Show that

$$
\frac{\partial h_{1}(p, u)}{\partial p_{2}}=m\left(\frac{\partial \omega_{1}}{\partial p_{2}}+\omega_{1} \omega_{2}\right)
$$

Hint: you do not have to derive the Hicksian demands to show this.

Bonus question: Are the preferences homothetic?

QUESTION 2

A consumer has the following indirect utility function:

$$
v(p, m)=\left(\frac{\left(p_{1}+p_{2}\right) m}{p_{1} p_{2}}\right)^{1 / 2}
$$

(a) Find the Marshallian demands. Is x_{1} a luxury good? Is the demand for x_{1} priceinelastic? Explain your answers.
(b) Find the expenditure function and the Hicksian demands.
(c) Are x_{1} and x_{2} complements or substitutes? Explain your answer.

QUESTION 3

Read all parts of this question before proceeding to answer any part. A consumer has the following utility function:

$$
u(x)=\log x_{1}+\log x_{2}
$$

(a) Derive the expenditure function.
(b) Derive the indirect utility function.
(c) Suppose income is $m=10$, the price of x_{2} is $p_{2}=1$, and the price of x_{1} rises from $p_{1}^{0}=1$ to $p_{1}^{1}=2$.
(i) Calculate the compensating and equivalent variations associated with the price change.
(ii) Calculate the change in consumer surplus associated with the price change. Explain the relationship between this change in consumer surplus and your answers to part (c)(i).

