MICROECONOMIC THEORY PRACTICE SECOND MIDTERM

 ANSWER GUIDE

 ANSWER GUIDE}

Answer to Question 1

(a) The certainty-equivalent wealth is the solution to an indifference equation:

$$
v(\hat{m})=\mathrm{E}[v(m)]
$$

In this case,

$$
v(\hat{m})=\log (\hat{m})
$$

and

$$
\mathbf{E}[v(m)]=\pi \log \left(m_{1}\right)+(1-\pi) \log \left(m_{2}\right)
$$

Solving for \hat{m} yields

$$
\hat{m}=m_{1}^{\pi} m_{2}^{1-\pi}
$$

For the values in the Question: $m_{1}=10000, m_{2}=4096$ and $\pi=0.25$. Thus, $\hat{m}=8000$

Expected wealth is

$$
\mathbf{E}[m]=\pi m_{1}+(1-\pi) m_{2}
$$

For the values in the Question: $\mathbf{E}[m]=8524$

The risk premium is

$$
R \equiv \mathrm{E}[m]-\hat{m}
$$

For the values in the Question: $R=524$
(b) If she purchases full insurance for a total premium T, then her expected utility is

$$
\mathbf{E}\left[v(m)_{F}\right]=\pi \log \left(m_{1}-T\right)+(1-\pi) \log \left(m_{1}-T\right)=\log \left(m_{1}-T\right)
$$

In the absence of insurance, her expected utility is

$$
\begin{aligned}
\mathbf{E}\left[v(m)_{0}\right] & =\pi \log \left(m_{1}\right)+(1-\pi) \log \left(m_{2}\right) \\
& =\log \left(m_{1}^{\pi} m_{2}^{1-\pi}\right)
\end{aligned}
$$

The maximum total premium she is willing to pay solves the indifference equation

$$
\mathbf{E}\left[v(m)_{F}\right]=\mathbf{E}\left[v(m)_{0}\right]
$$

Thus,

$$
T_{\max }=m_{1}-m_{1}^{\pi} m_{1}^{1-\pi}
$$

This can be expressed as

$$
T_{\max }=\mathbf{E}[L]+R
$$

where $\mathbf{E}[L]$ is expected loss:

$$
\mathbf{E}[L]=(1-\pi)\left(m_{1}-m_{2}\right)
$$

This relationship between $T_{\max }$ and R holds for any utility function.

Answer to Question 2

(a) Set up the utility maximization problem:

$$
\max _{c} c_{1}^{1 / 2}+\beta c_{2}^{1 / 2} \text { st } c_{1}+p c_{2}=w
$$

where

$$
p=\frac{1}{1+r} \quad \text { and } \quad w=y_{1}+p y_{2} .
$$

The FOCs with respect to c_{1} and c_{2} yield the standard tangency condition:

$$
c_{2}=\frac{\beta^{2} c_{1}}{p^{2}}
$$

Substitution into the wealth constraint then yields the Marshallian demands (and they are just special cases of Marshallian demands):

$$
c_{1}(p, w)=\frac{p w}{p+\beta^{2}} \quad \text { and } \quad c_{2}(p, w)=\frac{\beta^{2} w}{p\left(p+\beta^{2}\right)}
$$

The agent is a lender in period 1 iff $c_{1}(p, w)<y_{1}$. Making the substitutions for p and w in $c_{1}(p, w)$ then yields the following necessary and sufficient condition:

$$
r>\frac{1}{\beta}\left(\frac{y_{2}}{y_{1}}\right)^{1 / 2}-1
$$

(b) False. This production function is homogenous of degree $1 / 2$ (and hence exhibits DRS) regardless of the value of a and b. In particular,

$$
f(t x)=a\left(t x_{1}\right)^{1 / 2}+b\left(t x_{2}\right)^{1 / 2}=t^{1 / 2}\left[a x_{1}^{1 / 2}+b x_{2}^{1 / 2}\right]=t^{1 / 2} f(x)
$$

Answer to Question 3

(a) Set up the cost minimization problem (expressed more generally than in the question):

$$
\min _{x} w_{1} x_{1}+w_{2} x_{2} \quad \text { s.t. } a x_{1}^{1 / 2}+b x_{2}^{1 / 2}=y
$$

The FOCs with respect to x_{1} and x_{2} yield the tangency condition:

$$
\frac{w_{1}}{w_{2}}=\frac{a x_{2}^{1 / 2}}{b x_{1}^{1 / 2}}
$$

The constraint is then used to solve for conditional input demands:

$$
\begin{aligned}
& x_{1}(w, y)=y^{2}\left(\frac{a w_{2}}{a^{2} w_{2}+b^{2} w_{1}}\right)^{2} \\
& x_{2}(w, y)=y^{2}\left(\frac{b w_{1}}{a^{2} w_{2}+b^{2} w_{1}}\right)^{2}
\end{aligned}
$$

The cost function is

$$
c(y, w)=w_{1} x_{1}(y, w)+w_{2} x_{2}(y, w)=y^{2} \frac{w_{1} w_{2}}{a^{2} w_{2}+b^{2} w_{1}}
$$

Verification of Shephard's lemma:

$$
\frac{\partial c(w, y)}{\partial w_{1}}=y^{2}\left(\frac{\left(a^{2} w_{2}+b^{2} w_{1}\right) w_{2}-w_{1} w_{2} b^{2}}{\left(a^{2} w_{2}+b^{2} w_{1}\right)^{2}}\right)=y^{2}\left(\frac{a^{2} w_{2}^{2}}{\left(a^{2} w_{2}+b^{2} w_{1}\right)^{2}}\right)=x_{1}(w, y)
$$

and similarly for $x_{2}(w, y)$.
(b) Set up the direct profit maximization problem (since this is simpler than the twostage approach):

$$
\max _{x} p\left[\log x_{1}+x_{2}^{1 / 2}\right]-w_{1} x_{1}-w_{2} x_{2}
$$

The FOCs yield the input demands:

$$
x_{1}(p, w)=\frac{p}{w_{1}} \text { and } x_{2}(p, w)=\left(\frac{p}{2 w_{2}}\right)^{2}
$$

The supply function is

$$
y(p, w)=f\left(x_{1}(p, w), x_{2}(p, w)\right)=\log \left(\frac{p}{w_{1}}\right)+\left(\frac{p}{2 w_{2}}\right)
$$

and the profit function is

$$
\pi(p, w)=p y(p, w)-w_{1} x_{1}(p, w)-w_{2} x_{2}(p, w)=p\left(\log \left(\frac{p}{w_{1}}\right)+\left(\frac{p}{2 w_{2}}\right)\right)-p-\frac{p^{2}}{4 w_{2}}
$$

Verification of Hotelling’s lemma (with respect to p):

$$
\frac{\partial \pi}{\partial p}=p \cdot \frac{1}{p}+\log \left(\frac{p}{w_{1}}\right)+\frac{p}{w_{2}}-1-\frac{p}{2 w_{2}}=\log \left(\frac{p}{w_{1}}\right)+\frac{p}{2 w_{2}}=y(p, w)
$$

