Answer to Question 1

(a) Set up the Lagrangean and derive the first-order conditions for an interior solution:

$$
\begin{aligned}
& \frac{1}{x_{1}^{2}}=\lambda p_{1} \\
& 1=\lambda p_{2}
\end{aligned}
$$

Solution of these equations in combination with the budget constraint yields

$$
\begin{aligned}
& x_{1}(p, m)=\left(\frac{p_{2}}{p_{1}}\right)^{1 / 2} \\
& x_{2}(p, m)=\frac{m}{p_{2}}-\left(\frac{p_{1}}{p_{2}}\right)^{1 / 2}
\end{aligned}
$$

These solutions are only valid if $m \geq\left(p_{1}^{1 / 2} p_{2}^{1 / 2}\right)$. If this condition does not hold then the solution is at a corner, in which case

$$
\begin{aligned}
& x_{1}(p, m)=\frac{m}{p_{1}} \\
& x_{2}(p, m)=0
\end{aligned}
$$

See Figure A1-1. Note that x_{1} is an income neutral good (at the interior solution).
(b) Substitute the interior branch of the solution into the utility function to obtain

$$
v(p, m)=\frac{m}{p_{2}}-2\left(\frac{p_{1}}{p_{2}}\right)^{1 / 2}
$$

Set $v(p, m)=u$ and solve for m :

$$
e(p, u)=u p_{2}+2\left(p_{1} p_{2}\right)^{1 / 2}
$$

This is homogeneous of degree one in p :

$$
e(t p, u)=u\left(t p_{2}\right)+2\left(t p_{1} t p_{2}\right)^{1 / 2}=t e(p, u)
$$

(c) By Shephard’s lemma:

$$
\begin{aligned}
& h_{1}(p, u)=\frac{\partial e(p, u)}{\partial p_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{1 / 2} \\
& h_{2}(p, u)=\frac{\partial e(p, u)}{\partial p_{1}}=u+\left(\frac{p_{1}}{p_{2}}\right)^{1 / 2}
\end{aligned}
$$

Note that $h_{1}(p, u)$ is independent of u because x_{1} is income neutral; the tangency between any indifference curve and any iso-expenditure line (for given prices) occurs at the same value of x_{1}; see Figure A1-1.

The Hicksian demand measures the substitution effect. See Figure A1-2.

Answer to Question 2

(a) By Shephard’s lemma:

$$
\begin{aligned}
& h_{i}=\frac{\partial e}{\partial p_{i}} \text { and } h_{j}=\frac{\partial e}{\partial p_{j}} . \text { Then } \\
& \frac{\partial h_{i}}{\partial p_{j}}=\frac{\partial^{2} e}{\partial p_{i} \partial p_{j}} \text { and } \frac{\partial h_{j}}{\partial p_{i}}=\frac{\partial^{2} e}{\partial p_{j} \partial p_{i}}
\end{aligned}
$$

but these second cross-partials are equal, by Young's theorem.
(b) False. Express Engel aggregation in elasticity form:

$$
\sum_{i=1}^{n} w_{i} \eta_{i}=1
$$

where $w_{i}=\frac{p_{i} x_{i}}{m}$ is the "expenditure share" for good i. This cannot be satisfied if all goods are luxuries ($\eta_{i}>1 \forall i$), but it can satisfied if $\eta_{i}>1$ for some i provided $\eta_{i}<1$ for some i. It is not necessary that $\eta_{i}<0$ for some i.
(c) Recall that goods i and j are substitutes if

$$
\frac{\partial x_{i}}{\partial p_{j}}>0
$$

By Cournot aggregation:

$$
p_{1} \frac{\partial x_{1}}{\partial p_{1}}+p_{2} \frac{\partial x_{2}}{\partial p_{1}}=-x_{1}
$$

Divide through by x_{1} to obtain

$$
\varepsilon_{11}+\frac{p_{2}}{x_{1}} \frac{\partial x_{2}}{\partial p_{1}}=-1
$$

Rearranging, we have

$$
\frac{\partial x_{2}}{\partial p_{1}}=\left(-1-\varepsilon_{11}\right) \frac{x_{1}}{p_{2}}
$$

Since $\varepsilon_{11}<0$ (by normality of x_{1}) and $\left|\varepsilon_{11}\right|>1$, the RHS must be positive.

Answer to Question 3

(a) At any prices, expenditure is minimized where $x_{1}=x_{2}$. Thus, the Hicksian demands are simply given by

$$
\begin{aligned}
& h_{1}(p, u)=u \\
& h_{2}(p, u)=u
\end{aligned}
$$

The expenditure function is

$$
e(p, u)=p_{1} h_{1}(p, u)+p_{2} h_{2}(p, u)=u\left(p_{1}+p_{2}\right)
$$

(b) At any prices, utility is maximized where $x_{1}=x_{2}$. The constraint is then used to solve for Marshallian demands:

$$
\begin{aligned}
& x_{1}(p, u)=\frac{m}{p_{1}+p_{2}} \\
& x_{2}(p, u)=\frac{m}{p_{1}+p_{2}}
\end{aligned}
$$

The indirect utility function is

$$
v(p, m)=\min \left[x_{1}(p, m), x_{2}(p . m)\right]=\frac{m}{p_{1}+p_{2}}
$$

(c) (i) To summarize: $m=10,\left\{p_{1}^{0}, p_{2}^{0}\right\}=\{1,1\}$ and $\left\{p_{1}^{1}, p_{2}^{1}\right\}=\{3,1\}$

Compensating variation:

$$
C V=m-e\left(p^{1}, u^{0}\right)=m-e\left(p^{1}, v\left(p^{0}, m\right)\right)
$$

where we use $v(p, m)$ evaluated at p^{0} to find u^{0}. In particular,

$$
v\left(p^{0}, m\right)=\frac{10}{2}=5
$$

Thus,

$$
C V=10-5(3+1)=-10
$$

Equivalent variation:

$$
E V=e\left(p^{0}, u^{1}\right)-m=e\left(p^{0}, v\left(p^{1}, m\right)\right)-m
$$

where we use $v(p, m)$ evaluated at p^{1} to find u^{1}. In particular,

$$
v\left(p^{1}, m\right)=\frac{10}{4}=2.5
$$

Thus,

$$
E V=2.5(1+1)-10=-5
$$

(ii) Change in consumer surplus:

$$
\Delta C S=\int_{p_{1}^{1}}^{p_{1}^{0}} x_{1}(p, m) d p_{1}
$$

In this case,

$$
\begin{aligned}
\Delta C S= & \int_{p_{1}^{1}}^{p_{1}^{0}}\left(\frac{m}{p_{1}+p_{2}^{0}}\right) d p_{1}=m\left[\log \left(p_{1}+p_{2}^{0}\right)\right]_{3}^{1}=10[\log (1+1)-\log (3+1)] \\
& =10 \log (1 / 2)=-6.93
\end{aligned}
$$

Thus, we have $|C V|>|\Delta C S|>|E V|$, as expected for a price rise for a normal good.

FIGURE A1-1

FIGURE A1-2

