
   

 1

 
Answer to Question 1 

(a) Set up the Lagrangean and derive the first-order conditions for an interior solution: 
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Solution of these equations in combination with the budget constraint yields 
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These solutions are only valid if )( 2/1
2

2/1
1 ppm ≥ . If this condition does not hold then 

the solution is at a corner, in which case 
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See Figure A1-1. Note that 1x  is an income neutral good (at the interior solution). 

 

(b) Substitute the interior branch of the solution into the utility function to obtain 
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Set umpv =),(  and solve for m: 
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 This is homogeneous of degree one in p: 
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(c) By Shephard’s lemma: 
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Note that ),(1 uph  is independent of u because 1x  is income neutral; the tangency 

between any indifference curve and any iso-expenditure line (for given prices) occurs 

at the same value of 1x ; see Figure A1-1. 

  

The Hicksian demand measures the substitution effect. See Figure A1-2. 

 
 
Answer to Question 2 

(a) By Shephard’s lemma: 
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but these second cross-partials are equal, by Young’s theorem. 

 

 (b) False. Express Engel aggregation in elasticity form: 
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where w
p x
mi
i i=  is the “expenditure share” for good i. This cannot be satisfied if all 

goods are luxuries (ηi > 1  ∀i ), but it can satisfied if ηi > 1 for some i provided 
ηi < 1 for some i. It is not necessary that ηi < 0  for some i. 

 

(c) Recall that goods i and j are substitutes if  
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By Cournot aggregation: 
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Divide through by 1x  to obtain 
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Rearranging, we have 

  
2

1
11

1

2 )1(
p
x

p
x ε−−=
∂
∂  

Since 011 <ε  (by normality of 1x ) and 111 >ε , the RHS must be positive. 

 
 
Answer to Question 3 

(a) At any prices, expenditure is minimized where 21 xx = . Thus, the Hicksian demands 

are simply given by 
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  The expenditure function is 
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(b) At any prices, utility is maximized where 21 xx = . The constraint is then used to solve 

for Marshallian demands: 
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The indirect utility function is 
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(c) (i) To summarize: 10=m , }1,1{},{ 0
2
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Compensating variation: 
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where we use v p m( , )  evaluated at p0  to find u0 . In particular, 
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Equivalent variation: 
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where we use v p m( , )  evaluated at p1  to find u1 . In particular, 
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(ii) Change in consumer surplus: 
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Thus, we have EVCSCV >Δ> , as expected for a price rise for a normal good. 
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