Introduction to Quantum Computing Assignment 3 - Due Feb. 12
 Unitary operations and quantum circuits

1. One-qubit rotations.- The one-qubit "active" rotation operation is defined by

$$
\begin{equation*}
R_{\hat{n}}(\theta)=\mathrm{e}^{-i \frac{\theta}{2} \hat{n} \cdot \vec{\sigma}} \tag{1}
\end{equation*}
$$

where $\vec{\sigma}=(X, Y, Z)$ denotes the vector of Pauli operators. By "active rotation" we mean that a state (when represented in the Bloch sphere) gets rotated by angle θ about the axis \hat{n} with the direction of the rotation set by the right hand rule.
(a) Prove the following identity which makes the evaluation of the matrices corresponding to $R_{\hat{n}}(\theta)$ much easier:

$$
\begin{equation*}
R_{\hat{n}}(\theta)=\cos \left(\frac{\theta}{2}\right) I-i \sin \left(\frac{\theta}{2}\right) \hat{n} \cdot \vec{\sigma} . \tag{2}
\end{equation*}
$$

(b) Prove the relation:

$$
\begin{equation*}
R_{\hat{n}}^{\dagger}(\theta)=R_{\hat{n}}(-\theta)=R_{\hat{n}}^{-1}(\theta) . \tag{3}
\end{equation*}
$$

2. Rotation in the Bloch sphere.- Show that $R_{x}(\theta)$ applied to $|0\rangle$ produces a state corresponding to the following Bloch vector:

$$
\langle\hat{v}\rangle=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Sketch this operation in the Bloch sphere.
3. Matrix representation for a circuit.- What is the 4×4 unitary matrix representing this circuit?

4. Measurement in the Bell basis.- Show that this circuit executes measurements in the Bell basis $\left|\beta_{x y}\right\rangle$:

5. Measurement outcomes of a quantum circuit.- What are the probabilities $p\left(x_{1}, x_{2}\right)$ for the following circuit:

