Lecture 2: Kinetic and Potential Energies, Formal Solution of the 1-D Problem

Newton's Second Law $\left(N_{2}\right)$ for a force that depends on x is

$$
F(x)=m \ddot{x}
$$

One method to solve this equation formally is to write it as such:

$$
\ddot{x}=\frac{d v}{d t}=\frac{d x}{d t} \frac{d v}{d x}=v \frac{d v}{d x}
$$

And hence $\left(N_{2}\right)$ becomes

$$
F(x)=m v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} m v^{2}\right)=\frac{d T}{d x}
$$

Where we define $T=\frac{1}{2} m v^{2}$ as the kinetic energy of a system. We can now express N_{2} in integral form:

$$
\int_{x_{0}}^{x} F(x) d x=\int_{x_{0}}^{x} \frac{d T}{d x} d x=T-T_{0}
$$

The first integral by definition is W (work). This is the work-kinetic energy theorem. We now define the potential energy $V(x)$ as

$$
-\frac{d V(x)}{d x}=F(x)
$$

(Note that V is defined apart from an arbitrary constant). The work integral becomes

$$
\begin{gathered}
\int_{x_{0}}^{x} F(x) d x=-\int_{x_{0}}^{x} \frac{d V}{d x} d x=-\left(V-V_{0}\right)=T-T_{0} \\
\Longrightarrow T+V=T_{0}+V_{0}=\mathrm{constant} \equiv E
\end{gathered}
$$

We have just proven the conservation of energy theorem. Note that an important assumption we made is that the force F depends only on the position x ; this allowed us to define

$$
V(x)=-\int_{x_{0}}^{x} F(x) d x
$$

uniquely (independent of path). Such a force is denoted "conservative."

We can solve the energy equation formally:

$$
\begin{gathered}
\frac{1}{2} m v^{2}+V(x)=E \quad \Longrightarrow \quad\left(\frac{d x}{d t}\right)= \pm \sqrt{\frac{2}{m}\left(E-V_{0}\right)} \\
\Longrightarrow \int_{x_{0}}^{x} \frac{d x}{ \pm \sqrt{\frac{2}{m}\left(E-V_{0}\right)}}=\left(t-t_{0}\right)
\end{gathered}
$$

(i) For $t>t_{0}, x>x_{0}$ pick + (equivalent to $v>0$)
(ii) For $t>t_{0}, x<x_{0}$ pick - (equivalent to $v<0$)

This gives t as a function of x (the sign \pm is determined by the initial velocity).
Note that v is only real for $V(x) \leq E$. Physically, this means that motion is restricted to values x in the region $V(x) \leq E$. Furthermore, v changes sign at the turning points satisfy$\operatorname{ing} V\left(x_{\text {turning }}\right)=E$.

Example 1: Free Fall

If we assume $V(x)=0$ at $x=0$ we have $V(x)=+m g x$.
The initial condition

$$
\left\{\begin{array}{l}
x(t=0)=0 \\
v(t=0)=v_{0}
\end{array}\right.
$$

gives $E=\frac{1}{2} m v_{0}^{2}$

$$
\frac{1}{2} m v^{2}+m g x=\frac{1}{2} m v_{0}^{2} \Longrightarrow v^{2}=v_{0}^{2}-2 g x
$$

The turning point is the point at which $v=0$. This is just the maximum height:

$$
x_{\text {turning }}=h_{\max }=\frac{v_{0}^{2}}{2 g}
$$

Let's solve for time t as a function of $x: \quad v= \pm \sqrt{v_{0}^{2}-2 g x}$. We pick the sign + because the initial condition is $v_{0}>0$.

$$
\begin{gathered}
\int_{0}^{x} \frac{d x}{ \pm \sqrt{v_{0}^{2}-2 g x}}=t \Longrightarrow-\left.\frac{1}{g} \sqrt{v_{0}^{2}-2 g x}\right|_{0} ^{x}=t \\
\Longrightarrow-\frac{1}{g}\left(\sqrt{v_{0}^{2}-2 g x}-v_{0}\right)=t \\
\Longrightarrow \sqrt{v_{0}^{2}-2 g x}=v_{0}-g t \quad \text { or } \quad\left(v=v_{0}-g t \text { as before }\right) \\
v_{0}^{2}-2 g x=v_{0}^{2}-2 g t v_{0}+g^{2} t^{2} \\
x=v_{0} t-\frac{1}{2} g t^{2}
\end{gathered}
$$

Example 2: Variation of gravity with height
Law of gravity: $F=-\frac{G M m}{r^{2}}$
Define $x=r-r_{e}$ where r_{e} is the radius of the earth. Then...

$$
F(x)=-G M m \frac{1}{\left(x+r_{e}\right)^{2}}=-\frac{G M m}{r_{e}^{2}} \frac{r_{e}^{2}}{\left(x+r_{e}\right)^{2}} \Longrightarrow F(x)=-m g \frac{r_{e}^{2}}{\left(x+r_{e}\right)^{2}}
$$

since we know that $-\frac{G M m}{r_{e}^{2}}=-m g$ is the force of gravity as the surface of the earth.

$$
F(x)=-\frac{d V}{d x} \Longrightarrow V(x)=-\frac{m g r_{e}^{2}}{\left(x+r_{e}\right)}
$$

Note that when $r=r_{e}$ (or equivalently $x=0$) we have that $V=-m g r_{e}$. Now suppose that a body is launched upwards with velocity v_{0} :

$$
E=\frac{1}{2} m v^{2}-m g \frac{r_{e}^{2}}{\left(x+r_{e}\right)}
$$

and plugging in $t=0, x=0$, and $v=v_{0}$ yields

$$
\begin{gathered}
E=\frac{1}{2} m v_{0}^{2}-m g r_{e} \\
\Longrightarrow v^{2}-2 g \frac{r_{e}^{2}}{\left(x+r_{e}\right)}=v_{0}^{2}-2 g r_{e} \\
v^{2}=v_{0}^{2}-2 g r_{e}\left(1-\frac{r_{e}}{x+r_{e}}\right) \\
v^{2}=v_{0}^{2}-2 g x\left(\frac{1}{1+\frac{x}{r_{e}}}\right)
\end{gathered}
$$

Note: For $x \ll r_{e}$, this reduces to the constant g cases.

The turning point is given by setting $v=0$ and $x=h_{\max }$:

$$
\begin{gathered}
2 g h_{\max }\left(\frac{1}{1+\frac{h_{\max }}{r_{e}}}\right)=v_{0}^{2} \Longrightarrow 2 g h_{\max }=v_{0}^{2}+\frac{v_{0}^{2}}{r_{e}} h_{\max } \\
h_{\max }=\frac{v_{0}^{2}}{2 g-\frac{v_{0}^{2}}{r_{e}}} \Longrightarrow h_{\max }=\frac{v_{0}^{2}}{2 g}\left(\frac{1}{1-\frac{v_{0}^{2}}{2 g r_{e}}}\right)
\end{gathered}
$$

Again, when $v_{0}{ }^{2} \ll 2 g r_{e}$, we get the previous result.
The escape velocity v_{e} is the smallest v_{0} such that $h_{\max }=\infty$. We find this by setting the denominator equal to zero,

$$
1-\frac{v_{e}^{2}}{2 g r_{e}}=0 \Longrightarrow v_{e}=\sqrt{2 g r_{e}} \approx 11 \mathrm{~km} / \mathrm{s} \text { for the earth }
$$

Average speed of O_{2} ?

$$
\begin{aligned}
& \frac{1}{2} m_{O_{2}} \bar{v}_{O_{2}}^{2}=\frac{1}{2} k_{b} T \Longrightarrow \bar{v}_{O_{2}}=\sqrt{\frac{k_{b} T}{m_{O_{2}}}} \\
& m_{O_{2}}=2 \times 16 \times 1.66 \times 10^{-27} \mathrm{~kg}=5.3 \times 10^{-26} \mathrm{~kg} \\
& k_{b} T=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \times 300 \mathrm{~K}=4.1 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

$$
\Longrightarrow \quad \bar{v}_{O_{2}}=\sqrt{\frac{4 \times 10^{-21}}{5.3 \times 10^{-26}}}=0.3 \mathrm{~km} / \mathrm{s} \ll v_{\text {escape }} \text {. }
$$

Now since $v \propto \sqrt{m}$ we know that

$$
\bar{v}_{H_{2}}=\sqrt{\frac{m_{O_{2}}}{m_{H_{2}}}} \bar{v}_{O_{2}}=\sqrt{16} \bar{v}_{O_{2}}=1.2 \mathrm{~km} / \mathrm{s} \ll v_{\text {escape }}
$$

Why don't we have H_{2} in our atmosphere? At $T=3 \times 10^{4} \mathrm{~K}$ (millions of years ago...) we have

$$
\begin{gathered}
\bar{v}_{O_{2}}=3 \mathrm{~km} / \mathrm{s}<v_{\text {escape }} \\
\bar{v}_{H_{2}}=12 \mathrm{~km} / \mathrm{s}>v_{\text {escape }}
\end{gathered}
$$

