Lecture 3: Velocity Dependent Forces

The viscous force that a fluid exerts on a particle depends on velocity, $F=F(v)$. For most problems, it suffices to expand F in powers of v and keep only the $1^{\text {st }}$ and $2^{\text {nd }}$ orders:

$$
F(v)=-c_{1} v-c_{2} v|v|-c_{3} v^{3}-\ldots
$$

The modulus appears because F should be against v. In other words, $\operatorname{sgn}(F)=-\operatorname{sgn}(v)$

For a sphere in air:

$$
\left\{\begin{array}{l}
c_{1} \approx 1.55 \times 10^{-4}\left(\frac{D}{1 m}\right) \frac{N s}{m} \quad(\mathrm{D} \text { is diameter of sphere }) \\
c_{2} \approx 0.22\left(\frac{D}{1 m}\right)^{2} \frac{N s^{2}}{m^{2}}
\end{array}\right.
$$

Note: These coefficients depend on shape. $c_{1} \propto \sqrt{A}, \quad c_{2} \propto A_{\text {crosssection }}$. Which dominates? Depends on D and v.

$$
\text { ratio }=\frac{F_{\text {quad }}}{F_{\text {linear }}}=\frac{c_{2} v^{2}}{c_{1} v}=\frac{0.22}{1.55 \times 10^{-4}} D v=\frac{1.4 \times 10^{3}}{\mathrm{~m}^{2} / \mathrm{s}} D v
$$

Hence when $v \ll \frac{1}{1.4 \times 10^{3} D} \frac{m^{2}}{s}, c_{1}$ dominates!

Baseball: $D=0.07 m \Longrightarrow$ Quad dominates (ratio >1) when

$$
\begin{gathered}
\left(1.4 \times 10^{3}\right) D v>1 \Longrightarrow v>\left(1.4 \times 10^{3} \times 7 \times 10^{-2}\right)^{-1} \\
v>10^{-2} \mathrm{~m} / \mathrm{s}=1 \mathrm{~cm} / \mathrm{s}
\end{gathered}
$$

Basketball: $D=0.25 m \Longrightarrow$ ratio >1 when $v>3.6 \mathrm{~cm} / \mathrm{s}$.

Horizontal Motion with Linear Resistance

$$
\begin{gathered}
-c_{1} v=m \frac{d v}{d t} \Longrightarrow \int d t=-\frac{m}{c_{1}} \int_{v_{0}}^{v} \frac{d v}{v} \Longrightarrow t=-\frac{m}{c_{1}} \ln \left(\frac{v}{v_{0}}\right) \\
\Longrightarrow v=v_{0} e^{-\frac{c_{1}}{m} t}
\end{gathered}
$$

Since $v=d x / d t$ it follows that

$$
\begin{gathered}
\int_{0}^{x} d x=v_{0} \int_{0}^{t} d t \cdot e^{-\frac{c_{1}}{m} t} \Longrightarrow x=v_{0}\left(-\frac{m}{c_{1}}\right)\left(e^{-\frac{c_{1}}{m} t}-1\right) \\
x(t)=\left(\frac{v_{0} m}{c_{1}}\right)\left(1-e^{-\frac{c_{1}}{m} t}\right)
\end{gathered}
$$

Note that as $t \rightarrow \infty$ we have that $x \rightarrow v_{0} m / c_{1}$.

Quadratic Resistance

$$
\begin{gathered}
-c_{2} v^{2}=m \frac{d v}{d t} \quad(\text { assumed } v>0) \\
t=-\frac{m}{c_{2}} \int_{v_{0}}^{v} \frac{d v}{v^{2}}=\left.\frac{m}{c_{2}} \cdot \frac{1}{v}\right|_{v_{0}} ^{v}=\frac{m}{c_{2}}\left(\frac{1}{v}-\frac{1}{v_{0}}\right)
\end{gathered}
$$

So it follows that

$$
\left(\frac{c_{2}}{m}\right) t+\frac{1}{v_{0}}=\frac{1}{v} \Longrightarrow v=\frac{v_{0}}{1+\left(\frac{v_{0} c_{2}}{m}\right) t}
$$

From this point onwards we will define $k=v_{0} c_{2} / m$. Note that $v \sim 1 / t$ when $t \rightarrow \infty$.

$$
\begin{gathered}
\int_{0}^{x} d x=v_{0} \int_{0}^{t} \frac{d t}{1+k t}=\frac{v_{0}}{k} \ln (1+k t) \\
x(t)=\frac{m}{c_{2}} \ln (1+k t)
\end{gathered}
$$

In this case, $x \rightarrow \infty$ when $t \rightarrow \infty$. The v^{2} force gets weaker and weaker as the particle reduces velocity. Obviously, for v very small, we need to consider the linear term.

Vertical Fall and Vertical Velocity

$$
\begin{aligned}
& \vec{F}(v)=-c_{1} v \hat{y} \\
& \downarrow m \vec{g} \hat{y}
\end{aligned}
$$

For a downward fall we have $v<0$ so $F(v)=-c_{1} v \hat{y}$ is directed upwards.

$$
\begin{gathered}
-m g-c_{1} v=m \frac{d v}{d t} \Longrightarrow d t=-\frac{m d v}{m g+c_{1} v} \\
\Longrightarrow t=-\left.\left(\frac{m}{c_{1}}\right) \ln \left(m g+c_{1} v\right)\right|_{v_{0}} ^{v} \\
\Longrightarrow t=-\left(\frac{m}{c_{1}}\right) \ln \left(\frac{m g+c_{1} v}{m g+c_{1} v_{0}}\right) \\
\left(m g+c_{1} v_{0}\right) e^{-\frac{c_{1}}{m} t}=\left(m g+c_{1} v\right) \Longrightarrow v(t)=\left(\frac{m g}{c_{1}}+v_{0}\right) e^{-\frac{c_{1}}{m} t}-\left(\frac{m g}{c_{1}}\right)
\end{gathered}
$$

When $t \rightarrow \infty, v$ approaches the terminal velocity $v_{t}=-m g / c_{1}$. (Note that $d v / d t=0$ for $v=v_{t}$! The drag force has canceled the weight). The characteristic time for this approach is $\tau=m / c_{1}$.

$$
v(t)=v_{t}\left(1-e^{-\frac{t}{\tau}}\right)+v_{t}\left(1-e^{-\frac{t}{\tau}}\right)
$$

We regard $v_{t}\left(1-e^{-\frac{t}{\tau}}\right)$ as the "fade in" and $v_{t}\left(1-e^{-\frac{t}{\tau}}\right)$ as the "fade out."

For $v_{0}=0: v$ is within 1% of v_{t} after $t=5 \tau$.

Quadratic Case

$$
\overbrace{m \vec{g}}^{\vec{F}(v)} v_{0}<0
$$

$$
m \frac{d v}{d t}=-m g+c_{2} v^{2}
$$

The equation above is valid for $v_{0}<0$. Otherwise, we'd need to be careful with the sign!

$$
\begin{gathered}
\Longrightarrow m \frac{d v}{d t}=-m g\left(1-\frac{c_{2}}{m g} v^{2}\right) \\
\frac{d v}{d t}=-g\left(1-\frac{v^{2}}{v_{t}^{2}}\right)
\end{gathered}
$$

where v_{t} is the terminal velocity:

$$
v_{t}=-\sqrt{\frac{m g}{c_{2}}}
$$

Now we have that

$$
\begin{gathered}
\int_{v_{0}}^{v} \frac{d v}{1-\frac{v^{2}}{v_{t}^{2}}}=-g t \\
\left.v_{t} \tanh ^{-1}\left(\frac{v}{v_{t}}\right)\right|_{v_{0}} ^{v}=-g t \Longrightarrow \tanh ^{-1}\left(\frac{v}{v_{t}}\right)=-\frac{g t}{v_{t}}+\tanh ^{-1} \frac{v_{0}}{v_{t}} \\
\Longrightarrow v(t)=v_{t} \tanh \left(\frac{t}{\tau}+\tanh ^{-1}\left(\frac{v_{0}}{v_{t}}\right)\right)
\end{gathered}
$$

where τ is defined as $\tau=-v_{t} / g>0$. Note that $v(t=5 \tau)=0.99991 v_{t}$ for $v_{0}=0$. This is faster than linear!

Characteristic Distance for Approaching Terminal Velocity?

Question: Does it depend on v_{0} ? We use the fact that

$$
\frac{d v}{d t}=\frac{1}{2} \frac{d}{d y}\left(v^{2}\right) \quad\left(=\frac{d y}{d t} \frac{d v}{d y}\right)
$$

(Note that $y<0$ because the particle is going down)

$$
\Longrightarrow \frac{d}{d y}\left(v^{2}\right)=-2 g\left(1-\frac{v^{2}}{v_{t}^{2}}\right)
$$

We now define

$$
\begin{gathered}
u=\left(1-\frac{v^{2}}{v_{t}^{2}}\right) ; \quad \frac{d u}{d y}=-\frac{1}{v_{t}^{2}} \frac{d\left(v^{2}\right)}{d y}=+\frac{2 g}{v_{t}^{2}} u \\
\Longrightarrow u(y)=u(y=0) e^{+\frac{2 g}{v_{t}^{2}} y} \\
u(y)=\left(1-\frac{v_{0}^{2}}{v_{t}^{2}}\right) e^{+\frac{y}{y_{0}}}
\end{gathered}
$$

where we have that

$$
y_{0}=\frac{v_{t}^{2}}{2 g}=\left(\sqrt{\frac{m g}{c_{2}}}\right)^{2} \frac{1}{2 g}=\frac{m}{2 c_{2}}
$$

Hence the characteristic length is independent of both v_{0} and g.

$$
\begin{aligned}
u=\left(1-\left(\frac{v}{v_{t}}\right)^{2}\right) & \Longrightarrow\left(1-\left(\frac{v}{v_{t}}\right)^{2}\right)=\left(1-\left(\frac{v_{0}}{v_{t}}\right)^{2}\right) e^{+\frac{y}{y_{0}}} \\
& \Longrightarrow v^{2}=v_{t}^{2}\left(1-e^{+\frac{y}{y_{0}}}\right)+v_{0}^{2} e^{+\frac{y}{y_{0}}}
\end{aligned}
$$

Can also show: For Linear Drag: $y_{0}=v_{t}^{2} / g$ (no factor of 2)

$$
\text { Raindrop: Linear, } \quad v_{t}=0.33 \mathrm{~m} / \mathrm{s} \quad, \quad y_{0}=1 \mathrm{~cm} \quad, \quad \tau=0.034 \mathrm{~s}
$$

$$
\text { Basketball: Quadratic, } \quad v_{t}=20.6 \mathrm{~m} / \mathrm{s} \quad, \quad y_{0}=21.6 \mathrm{~m} \quad, \quad \tau=2.1 \mathrm{~s}
$$

