PHYS 321A Lecture Notes 3 University of Victoria

Lecture 3: Velocity Dependent Forces

The viscous force that a fluid exerts on a particle depends on velocity, F' = F'(v). For most
problems, it suffices to expand F in powers of v and keep only the 1% and 2"? orders:

F(v) = —c1v — covlv| — csv® — .
The modulus appears because F' should be against v. In other words, sgn(F') = —sgn(v)
F(v)

+m§

For a sphere in air:

¢ ~ 1.55 x 107 (£) &= (D is diameter of sphere)

e~ 0.22 () g

Note: These coefficients depend on shape. ¢ \/Z, Co X Aprosssection. Which dominates?
Depends on D and v.

. Fred  c20? 0.22 1.4 x 10°
tio = = = —— = Dv = ——D
O e civ 15 x 104" m2fs .

Hence when v << ¢; dominates!

_ 1 m?
1.4x103D s ?

Baseball: D = 0.07m = Quad dominates (ratio > 1) when

(14x10)Dv>1 = v> (14 x10° x 7x 1072)7!

v>10"2m/s = lem/s

Basketball: D = 0.25m = ratio > 1 when v > 3.6¢m/s.
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Horizontal Motion with Linear Resistance

dv m [ dv m v
—clv:m—t:> dt = —— — = t=——In| —

d c1 Sy, ¥ cy

€1

Since v = dx/dt it follows that

T t
/ dr = Uo/ dt e mt = z=u1 (—@) (e_;n*lt — 1)
0 0 €1
z(t) = (M> (1 — e’%f)
C1

Note that as t — oo we have that x — vom/cy.

Quadratic Resistance
9 dv

—cov® =m—  (assumed v > 0)
dt
t_m”dv_mlv_mll
o v U2 e vvo_ co \v g
So it follows that
c 1
<_2>t+—:—: V= Yo
m vy U

From this point onwards we will define & = vyco/m. Note that v ~ 1/t when t — oc.

v t dt Vo
dx = — = n(1+ kt
= ) =

2(t) = ?111(1 + kt)

In this case, * — oo when t — oco. The v? force gets weaker and weaker as the particle
reduces velocity. Obviously, for v very small, we need to consider the linear term.
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Vertical Fall and Vertical Velocity

F) = —qvy
mgy
For a downward fall we have v < 0 so F'(v) = —cyvy is directed upwards.

dv mduv
—-mg—cv=m— — dt = ————
dt mg + civ

v

= t=— (E) In(mg + c1v)

C1 %
— t:_(ﬂ>m<M)
6] mg + c1vg
c m c
(mg + Clvo)e_ﬁlt = (mg + cv) = |o(t) = (_g =+ Uo) et (@)
C1 C1

When ¢ — oo, v approaches the terminal velocity v, = —mg/c;. (Note that dv/dt = 0 for
v = v;! The drag force has canceled the weight). The characteristic time for this approach
is T =m/c.

v(t) = v(1 — e_%) + (1 — 6_5)

We regard v;(1 — e+ ) as the “fade in” and v,(1 — e~ ) as the “fade out.”

For vy = 0: v is within 1% of v, after ¢t = 57.
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Quadratic Case

F (v)

<0 dv + cov?
7 m— = —m CoU
) 0 dt g 2

mg

The equation above is valid for vy < 0. Otherwise, we’d need to be careful with the sign!

N dv [ C2 2
m— = —m - —
dt g

o _ (v
dt v}

where v; is the terminal velocity:

Now we have that

/” dv ;
:—g
0 1_%

Vi

v

t
= —gt = tanh ' (2) - & + tanh_lﬁ
(o V¢ (%

v
v; tanh™! (—)
(%
Vo
— |v(t) = v tanh [ — + tanh™ | —
T V¢

where 7 is defined as |7 = —v;/g| > 0. Note that v(t = 57) = 0.99991v; for vy = 0. This is
faster than linear!

v A
vy quadratic
_m _myg
’ 2

Ta=dil— , |l =a4/—
\ ! c2g ! &

linear
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Characteristic Distance for Approaching Terminal Velocity?

Question: Does it depend on vy? We use the fact that

dv_1d o (_dydv
dt  2dy Cdtdy

(Note that y < 0 because the particle is going down)

We now define

where we have that

Yo =

v [mg\?
29_ Co

1 m
29 202

Hence the characteristic length is independent of both vy and g.

()

—

= ()0

2 2 +L
vi=wv;(l—e"w)+uvje v

2t

Can also show: For Linear Drag: yo = v?/g (no factor of 2)

Raindrop: Linear,

v =0.33m/s

Yo = lem |

7 =0.034s

Basketball: Quadratic,

vy = 20.6m/s

, Yo = 21.6m

, T=21s
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