PHYS 321A Lecture Notes 4 University of Victoria

Lecture 4: Harmonic Motion

Two mutual atoms interacting:

V(X) 4 1
Tz
A B
V(X) — _xlz- F
i P
Xeq o
xé
To find the equilibrium point, where the force is zero:
dV(x) 12A 6B 12A 6B 6/ 2A
Py =as =0 = wm = T T\ g
d*v d*v
Stable or unstable equilibrium? |Stable: — >0 Unstable: — < 0
dz? dz?
4or unstable
2
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To determine stability, we expand V' (x) about x,.

av 1d*V

Vi(z) = V(ze) + e (T — o) + S (2 — Teg)? + 0(z — 209) + ...

where all derivatives are evaluated at © = z.,. We know that dV/dx = 0. For the second
order derivative:

d*V 13-12A 7-6B
—m =k=——yp 8
x rld 8,

1
— | V() = const. + §k(x — Teg)?

In general, for a number of physical problems involving equilibrium, we can always expand
in powers of deviations from equilibrium. = Minimum “Linear” model.

Later, we will show that terms like G(x — z,,)® and G(x — x,)* give us non-linear effects
and chaos.

The associated force is

v

=

F(z) =

—k(r — Teq) (“Hooke’s law for springs”)

Newton’s law: (drop ., for simplicity):

k
mi=—-kr — |Z+—x=0
m

To find the solution, we plug in
z(t) = Asin(wot + ¢o) %(t) = Awg cos(wot + ¢o)

And hence, by Newton’s law, we have that

— Awg sin(wot + ¢o) + (%) Asin(wot + ¢o) =0

k [k
= (— — wg) sin(wot + ¢p) =0 = |wg=1/—
m m

To find the parameters A and ¢y, we relate to the initial conditions z(t = 0) = z, and
v(t =0) = vy.
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1 - N —1 { WoZo
w—otan(¢0) =0 = |¢ = tan ( )

wo

2
AZSin(60) + AZ cos2(go) = 3 + () = | A= x3+(_)

\

2
Period of Motion: T = il
Wo

Superposition Principle:

¢ x1(t) = Ay sin(wot + ¢1)
To(t) = Az sin(wot + @)

are solutions, then x(t) + z2(t) is also a solution. This happens because the differential

equation is linear (no x?, 2%, etc...)
Hertz or rad/s?
27 .
Angular Frequency: wo = —>  units are rad/s
0

1 Wo . 1
Frequency: f= =5 —>  units are Hertz (s7'), or cycles per second.

0 ™
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Complex Solutions

z(t) = Ae'®ot%0) — Alcos(wot + ¢o) + 7 sin(wot + )]

x(t) = dwpz(t)

i(t) = (iwg)?x(t) = &= —w%x = —%x
n1":*’.*1[;(({:)]
sin[wt A4 Qg]
[Wt‘l‘ 0] -
Re[x(t)]
cos[wt'+ @p]

Interpretation: Particle rotating in a circle with constant speed.
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Example 1: Effect of a constant force on a spring

(Equilibrium Point)

x>0|

F
m e

F,
mi = —kr+F, = —k(x—?o) = k2

where we define 2’ = x — Fy/k and where Fj is a constant force. Thus
b
¥ (0= ) =5 = [ =]

Any constant force applied to a harmonic oscillator merely shifts the equilibrium position.
This implies that the equation of motion is unchanged if we shift the displacement variables.

/N
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Example 2: Simple Pendulum

We have that

ms = —mgsin(0)
. 03 03 g
ml@z—mg(@—a%—g—...)%—mge — 9+70:0
Hence the frequency of oscillations is wy = 1/¢/l (independent of amplitude). We can use

this fact for neat applications, including how to build a clock.

Suppose we want the period of a clock to be T, = 2s. How long should we make the

pendulum?
l o\’
Ty = 27r\/j — =g (—°> — 0.9936m
g 2
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Energy of a Harmonic Oscillator

{ x(t) = Asin(wot + ¢o)
x(t) = Awg cos(wot + ¢p)

—kx?
2
\1 //
F'y

x is reaches its maximum value when © =0,  2,,,, = +A are turning points.

1 1 1 1
E = §m332 + §kx2 = émAng cos®(wot + ¢o) + ikAQ sin®(wot + @)
1
E = _kA®
2

We can also show that

1 1 [T 1
<K> = <-mi’> = — dt—-mi? = -kA?
me T J, 2mx 1
1 1 [T 1 1
1% = —mat> = — dt=kz? = —kA?
< > <2m$ To ; 2:1: 1
E
<K> = <V> = )

We call this the “swing” energy between < K > and <V >
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