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Lecture 4: Harmonic Motion

Two mutual atoms interacting:

To find the equilibrium point, where the force is zero:

F = −dV (x)

dx
=

12A

x13
− 6B

x7
= 0 =⇒ 12A

x13
=

6B

x7
=⇒ xeq =

6

√
2A

B

Stable or unstable equilibrium? Stable:
d2V

dx2
> 0 Unstable:

d2V

dx2
< 0
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To determine stability, we expand V (x) about xeq.

V (x) ≈ V (xeq) +
dV

dx
· (x− xeq) +

1

2

d2V

dx2
· (x− xeq)2 + σ(x− xeq)3 + ...

where all derivatives are evaluated at x = xeq. We know that dV/dx = 0. For the second
order derivative:

d2V

dx2
≡ k = −13 · 12A

x14eq
+

7 · 6B
x8eq

=⇒ V (x) = const. +
1

2
k(x− xeq)2

In general, for a number of physical problems involving equilibrium, we can always expand
in powers of deviations from equilibrium. =⇒ Minimum “Linear” model.

Later, we will show that terms like G(x − xeq)3 and G(x − xeq)4 give us non-linear effects
and chaos.

The associated force is

F (x) = −dV
dx

= −k(x− xeq) (“Hooke’s law for springs”)

Newton’s law: (drop xeq for simplicity):

mẍ = −kx =⇒ ẍ+
k

m
x = 0

To find the solution, we plug in

x(t) = A sin(w0t+ φ0) ẋ(t) = Aw0 cos(w0t+ φ0)

And hence, by Newton’s law, we have that

−Aw2
0 sin(w0t+ φ0) +

(
k

m

)
A sin(w0t+ φ0) = 0

=⇒
(
k

m
− w2

0

)
sin(w0t+ φ0) = 0 =⇒ w0 =

√
k

m

To find the parameters A and φ0, we relate to the initial conditions x(t = 0) = x0 and
v(t = 0) = v0.
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=⇒


x(t = 0) = a sin(φ0) = x0

ẋ(t = 0) = Aw0 cos(φ0) = v0

=⇒



1
w0

tan(φ0) = x0
v0

=⇒ φ0 = tan−1
(
w0x0
v0

)

A2 sin2(φ0) + A2 cos2(φ0) = x20 +
(
v0
w0

)2
=⇒ A =

√
x20 +

(
v0
w0

)2

Period of Motion: T0 =
2π

w0

Superposition Principle:

if

{
x1(t) = A1 sin(w0t+ φ1)
x2(t) = A2 sin(w0t+ φ2)

are solutions, then x1(t) + x2(t) is also a solution. This happens because the differential
equation is linear (no x2, ẋ2, etc...)

Hertz or rad/s?

Angular Frequency: w0 =
2π

T0
=⇒ units are rad/s

Frequency: f =
1

T0
=
w0

2π
=⇒ units are Hertz (s−1), or cycles per second.
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Complex Solutions

x(t) = Aei(w0t+φ0) = A[cos(w0t+ φ0) + i sin(w0t+ φ0)]

ẋ(t) = iw0x(t)

ẍ(t) = (iw0)
2x(t) =⇒ ẍ = −w2

0x = − k
m
x

Interpretation: Particle rotating in a circle with constant speed.
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Example 1: Effect of a constant force on a spring

mẍ = − kx+ F0 = − k
(
x− F0

k

)
= − kx′

where we define x′ = x− F0/k and where F0 is a constant force. Thus

ẍ′ =
¨(

x− F0

k

)
= ẍ =⇒ mẍ′ = −kx′

Any constant force applied to a harmonic oscillator merely shifts the equilibrium position.
This implies that the equation of motion is unchanged if we shift the displacement variables.
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Example 2: Simple Pendulum

We have that

ms̈ = −mg sin(θ)

mlθ̈ = −mg
(
θ − θ3

3!
+
θ3

5!
− ...

)
≈ −mgθ =⇒ θ̈ +

g

l
θ = 0

Hence the frequency of oscillations is w0 =
√
g/l (independent of amplitude). We can use

this fact for neat applications, including how to build a clock.

Suppose we want the period of a clock to be T0 = 2s. How long should we make the
pendulum?

T0 = 2π

√
l

g
=⇒ l = g

(
T0
2π

)2

= 0.9936m
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Energy of a Harmonic Oscillator

{
x(t) = A sin(w0t+ φ0)
ẋ(t) = Aw0 cos(w0t+ φ0)

x is reaches its maximum value when ẋ = 0, xmax = ±A are turning points.

E =
1

2
mẋ2 +

1

2
kx2 =

1

2
mA2w2

0 cos2(w0t+ φ0) +
1

2
kA2 sin2(w0t+ φ0)

E =
1

2
kA2

We can also show that

< K > = <
1

2
mẋ2 > =

1

T0

∫ T0

0

dt
1

2
mẋ2 =

1

4
kA2

< V > = <
1

2
mx2 > =

1

T0

∫ T0

0

dt
1

2
kx2 =

1

4
kA2

< K > = < V > =
E

2

We call this the “swing” energy between < K > and < V >
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