Lecture 5: Damped Harmonic Motion

$$
\begin{aligned}
& m \ddot{x}=-k x-c v \quad \Longrightarrow \quad \ddot{x}+\left(\frac{k}{m}\right) x+\left(\frac{c}{m}\right) \dot{x}=0
\end{aligned}
$$

We now define $w_{0}^{2}=k / m$ and $2 \gamma=c / m$. Our equation becomes

$$
\ddot{x}+2 \gamma \dot{x}+w_{0}^{2} x=0
$$

To solve this ODE, we use the differential operator method. We write the equation as

$$
\begin{aligned}
D\left(\frac{d}{d t}, \frac{d^{2}}{d t^{2}}\right) x & =0 \\
D\left(\frac{d}{d t}, \frac{d^{2}}{d t^{2}}\right)=\left(\frac{d}{d t}+2 \gamma \frac{d^{2}}{d t^{2}}+w_{0}^{2}\right) & =\left(\frac{d}{d t}-r_{+}\right)\left(\frac{d}{d t}-r_{-}\right)
\end{aligned}
$$

We have a quadratic equation $d / d t$. We find the roots:

$$
r_{ \pm}=\frac{-2 \gamma \pm \sqrt{4 \gamma^{2}-4 w_{0}^{2}}}{2}=\left(-\gamma \pm \sqrt{\gamma^{2}-w_{0}^{2}}\right)
$$

Hence it follows that

$$
D\left(\frac{d}{d t}, \frac{d^{2}}{d t^{2}}\right)=\left(\frac{d}{d t}+\gamma-\sqrt{\gamma^{2}-w_{0}^{2}}\right)\left(\frac{d}{d t}+\gamma+\sqrt{\gamma^{2}-w_{0}^{2}}\right)=D_{1}\left(\frac{d}{d t}\right) \cdot D_{2}\left(\frac{d}{d t}\right)
$$

Let $q=\sqrt{\gamma^{2}-w_{0}^{2}}$

Our differential equation becomes

$$
\left(\frac{d}{d t}+\gamma-q\right)\left(\frac{d}{d t}+\gamma+q\right) x(t)=0
$$

Note that D_{1} and D_{2} are commutative operators. In other words, $D_{1} D_{2}=D_{2} D_{1}$. Therefore there are two possible solutions:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
x_{1}(t)=e^{-(\gamma-q) t} \\
x_{2}(t)=e^{-(\gamma+q) t}
\end{array} \text { since } D_{1} x_{1}(t)=0\right. \\
D_{2} x_{2}(t)=0
\end{array}\right\}
$$

You can check this solution directly by substitution into the second order differential equation. Remember that $q=\sqrt{\gamma^{2}-w_{0}^{2}}$.

Three Possible Scenarios:
(i) q real >0 OVERDAMPING
(ii) $q=0 \quad$ CRITICAL DAMPING
(iii) q imaginary UNDERDAMPING

Case 1: Overdamping

This occurs when $\gamma>w_{0}$.

$$
x(t)=A_{1} e^{-(\gamma-q) t}+A_{2} e^{-(\gamma+q) t}
$$

The A_{1} term decays slowly whereas the A_{2} term decays fast. Now consider

$$
\begin{aligned}
& x(t=0)=x_{0} \quad \Longrightarrow \quad A_{1}+A_{2}=x_{0} \\
& \dot{x}(t=0)=0 \quad \Longrightarrow \quad-(\gamma-q) A_{1}-(\gamma+q) A_{2}=0 \quad \Longrightarrow \quad \frac{A_{1}}{A_{2}}=-\frac{\gamma+q}{\gamma-q}
\end{aligned}
$$

Now assume $\gamma \gg w_{0} \quad \Longrightarrow \quad q=\sqrt{\gamma^{2}-w_{0}^{2}}=\gamma \sqrt{1-\left(\frac{w_{0}}{\gamma}\right)^{2}} \approx \gamma\left[1-\frac{1}{2}\left(\frac{w_{0}}{\gamma}\right)^{2}\right]$

$$
\Longrightarrow \frac{A_{1}}{A_{2}}=-\frac{2 \gamma}{\frac{1}{2}\left(\frac{w_{0}}{\gamma}\right)^{2} \gamma}=-4\left(\frac{\gamma}{w_{0}}\right)^{2} \Longrightarrow A_{1} \gg A_{2}
$$

From this, it follows that

$$
x(t) \approx x_{0} e^{-(\gamma-q) t} \approx x_{0} e^{-\frac{1}{2}\left(\frac{w_{0}}{\gamma}\right)^{2} \gamma t}
$$

This solution is valid at longer times, because we dropped A_{2}. Note that \dot{x} is approximately less than or equal to zero. For simplicity, we write

$$
x(t) \approx x_{0} e^{-t / \tau} \quad \text { where } \quad \tau=2\left(\frac{\gamma}{w_{0}}\right)^{2} \frac{1}{\gamma} \gg \frac{1}{\gamma}
$$

In this situation, it takes a long time to reach equilibrium, despite being overdamped!

Case 2: Critical Damping

This occurs when $\gamma=w_{0} \quad \Longrightarrow \quad q=0$.
The solution $x_{1}(t)$ and $x_{2}(t)$ are no longer independent, because the functions are the same $\left(x_{1}(t)=x_{2}(t)=e^{-\gamma t}\right)$. Our method of swapping the order of the operators to find two independent solutions no longer works. We need to find an additional solution.

$$
\left(\frac{d}{d t}+\gamma\right)^{2} x(t)=0
$$

We define

$$
\begin{aligned}
u(t)=\left(\frac{d}{d t}+\gamma\right) x(t) & \Longrightarrow\left(\frac{d}{d t}+\gamma\right) u(t)=0 \quad \Longrightarrow \quad u(t)=A e^{-\gamma t} \\
\Longrightarrow A & =e^{\gamma t}\left(\frac{d}{d t}+\gamma\right) x(t)=\frac{d}{d t}\left(x(t) e^{\gamma t}\right) \\
\Longrightarrow \int_{0}^{t} A d t & =\int_{0}^{t} d\left(x e^{\gamma t}\right) \Longrightarrow A t=x(t) e^{\gamma t}-x_{0} \\
& \Longrightarrow x(t)=\left(A t+x_{0}\right) e^{-\gamma t}
\end{aligned}
$$

Also from $\dot{x}(t=0)=v_{0}$ we get that $A=\left(v_{0}+\gamma x_{0}\right)$.
Critical damping is desired in many applications, such as vehicle suspensions. It is the fastest way to reach equilibrium without oscillating back and forth.

Proof: (for $\dot{x}(t=0)=0)$

$$
\begin{gathered}
x(t)=x_{0}(\gamma t+1) e^{-\gamma t} \sim x_{0} \gamma t e^{-\gamma t} \quad(\text { assymptotes }) \\
x_{\text {overdamped }}(t) \sim x_{0} e^{(-\gamma-q) t} \\
\Longrightarrow \quad \text { ratio }=\gamma t e^{-q t}
\end{gathered}
$$

and as $t \rightarrow \infty$, the ratio approaches zero.

Case 3: Underdamping

This occurs when $\gamma<w_{0} \Longrightarrow q=i \sqrt{w_{0}^{2}-\gamma^{2}}=i w_{d}$ where w_{d} is the damped oscillation frequency. It is always the case that $w_{d}<w_{0}$.

$$
\begin{aligned}
x(t) & =c_{+} e^{-\left(\gamma-i w_{d}\right) t}+c_{-} e^{-\left(\gamma+i w_{d}\right) t} \\
& =e^{-\gamma t}\left(c_{+} e^{i w_{d} t}+c_{-} e^{-i w_{d} t}\right)
\end{aligned}
$$

Note that x must be real. Hence $c_{+} e^{i w_{d} t}=\left(c_{-} e^{-i w_{d} t}\right)^{*} \quad \Longrightarrow \quad c_{+}=c_{-}^{*}=c^{*}$.

$$
x(t)=e^{-\gamma t}\left(c^{*} e^{i w_{d} t}+c e^{-i w_{d} t}\right)
$$

For convenience, we write $c=i(A / 2) e^{-i \phi_{0}}$

$$
\begin{aligned}
x(t)= & e^{-\gamma t}\left(-i \frac{A}{2} e^{i w_{d} t+\phi_{0}}+i \frac{A}{2} e^{-i w_{d} t+\phi_{0}}\right) \\
= & A e^{-\gamma t}\left(\frac{e^{i w_{d} t+\phi_{0}}-e^{-i w_{d} t+\phi_{0}}}{2 i}\right) \\
& x(t)=A e^{-\gamma t} \sin \left(w_{d} t+\phi_{0}\right)
\end{aligned}
$$

With a longer period due to damping, $T_{d}>T_{0}\left(w_{d}<w_{0}\right)$.

