PHYS 321A Lecture Notes 5 University of Victoria

Lecture 5: Damped Harmonic Motion
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We now define w2 = k/m and 2y = ¢/m. Our equation becomes

i+ 2vi + wiz =0

To solve this ODE, we use the differential operator method. We write the equation as

d d?
d d? d d? d d
D(— —|=|—+2v— 2) = (= — — —r_
(dt’ dt2> (dt e +w0> (dt ”) (dt ' >
We have a quadratic equation d/dt. We find the roots:

_ VA — 4} _ (_7 4 Jrr w%)
2

T+

Hence it follows that
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Let |q = /7% — w3
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Our differential equation becomes

<%+7—Q> (%ﬂw) z(t) =0

Note that Dy and D, are commutative operators. In other words, DDy = Dy D;. There-
fore there are two possible solutions:

z1(t) = e 7Dt since Dyzy(t) =0

To(t) = e~ OFDt since Dywo(t) = 0

—  |z(t) = Aje= =9t 4 A e~ (rtat

You can check this solution directly by substitution into the second order differential equa-

tion. Remember that ¢ = \/7% — wg.

Three Possible Scenarios:
(i) greal >0  OVERDAMPING
(ii))g=0 CRITICAL DAMPING

(iii) q imaginary ~ UNDERDAMPING
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Case 1: Overdamping

This occurs when v > wy.

The A; term decays slowly whereas the Ay term decays fast. Now consider

r(t=0)=20 = Ai+A=u

t(t=0)=0 = -(-9A-(+9Ah=0 — F—=-——

Now assume v >> wy = ¢=+/7?—wi=1 1_(%)2z7[1__(wo)2]

From this, it follows that
wn \ 2
z(t) &~ zge” T & o2 (5)

This solution is valid at longer times, because we dropped A;. Note that & is approximately
less than or equal to zero. For simplicity, we write

2
1
z(t) = xoe™™ where T =2 (l) >>

1
Wo,/) Y

In this situation, it takes a long time to reach equilibrium, despite being overdamped!
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Case 2: Critical Damping

This occurs when vy =wg = ¢=0.

The solution z1(t) and xs(t) are no longer independent, because the functions are the same
(x1(t) = x2(t) = e ). Our method of swapping the order of the operators to find two
independent solutions no longer works. We need to find an additional solution.

We define

— A= (Wv) o(t) = % (w(0)e)

t t
= / Adt = / d(ze™) = At=z(t)e" — x9
0 0

= |z(t) = (At + 2¢)e "

Also from @(t = 0) = vy we get that A = (vo + o).

Critical damping is desired in many applications, such as vehicle suspensions. It is the fastest
way to reach equilibrium without oscillating back and forth.

Proof: (for #(t =0) = 0)

z(t) = zo(yt + 1)e 7" ~ zoyte™™  (assymptotes)

—y—q)t
xoverdamped(t) ~ 3506( 79

— ratio = yte ¥

and as t — oo, the ratio approaches zero.
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Case 3: Underdamping

This occurs when v < wy = ¢ =1i\/w}—7* = iw,; where wy is the damped oscilla-
tion frequency. It is always the case that wy < wy.

I(t) — C+6‘(’Y—iwd)t + C_e—('y—i-iwd)t

— e—vt (C+€det + C_e—zwdt)

Note that x must be real. Hence c, et = (c_e™™at)"  — ¢, =c_* =c*
x(t) =e " (c*ei“’dt + ce’iwdt)

For convenience, we write ¢ = i(A/2)e~0

CC(t) = ¢ (—iéeiwdﬂr‘bo + iéeiwdt+¢0>

eiwdt—i-d)o _ 6—iwdt+q50
= Ae "
21

z(t) = Ae " sin(wgt + ¢p)

With a longer period due to damping, Ty > Ty (wgq < wyp).
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