
PHYS 321A Lecture Notes 6 University of Victoria

Lecture 6: Damped Harmonic Motion: Energy,

Quality Factor, Phase Space

Review from last lecture:

mẍ = −kx− cv =⇒ ẍ+ 2γẋ+ w2
0x = 0

γ =
c

2m
, w0 =

√
k

m

(i) Overdamping: γ > w0

x(t) = A1e
−(γ−q)t + A2e

−(γ+q)t q =
√
γ2 − w2

0

(ii) Critical Damping: γ = w0

x(t) = ((v0 + γx0)t+ x0)e
−γt

(iii) Underdamping: γ < w0

x(t) = Ae−γt sin(wdt+ φ0) wd =
√
w2

0 − γ2 < w0

For example:
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Energy Loss

E =
1

2
mẋ2 +

1

2
kx2

dE

dt
= mẋẍ+ kxẋ = (mẍ+ kx)ẋ = −cẋ2 < 0

Hence dE/dt < 0 always and E → 0. We also have

(mẍ+ kx)ẋ = Fdampingẋ (= Fv)

Recall that Power= Fv.

Quality Factor

For a weakly damped system, Q >> 1. For a strongly damped system, Q ∼ 1 or Q << 1.
Q is defined as

Q ≡ 2π
E

|∆E|

We can think of E/|∆E| as 1/fraction of energy lost per cycle. (This concept only applies
to underdamped systems!)

∆E =

∫ Td

0

Ėdt = −c
∫ Td

0

dtẋ2

We will use

x(t) = Ae−γt sin(wdt) =⇒ ẋ(t) = Awde
−γt cos(wdt)− Aγe−γt sin(wdt)

Hence we have

∆E = −c
∫ Td

0

dt[A2wd
2e−2γt cos2(wdt)−2A2wdγe

−2γt sin(wdt) cos(wdt)+A2γ2e−2γt sin2(wdt)]

Now let θ = wdt =⇒ dt = dθ/wd.
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∆E ≈ −cA
2

wd
e−2γt

∫ 2π

0

dθ[w2
d cos2(θ)− 2wdγ sin(θ) cos(θ) + γ2 sin2(θ)]

Recall that cos2 θ = (1 + cos 2θ)/2 and sin2 θ = (1− cos 2θ)/2. Hence

∆E ≈ −cA
2

wd

[w2
d + γ2]

2
2πe−2γt = − cA2w2

0

(
π

wd

)
e−2γt = −mγA2w2

0Tde
−2γt

In the line above, we use the fact that w2
d +γ2 = w2

0 and that c = 2mγ. If we write 2γ = 1/τ
we have

∆E = −
(

1

2
mw2

0A
2e−t/τ

)(
Td
τ

)
=⇒ |∆E|

E
=
Td
τ

Q = 2π
E

|∆E|
=

2πτ

Td
=

2πτ

2π/wd
= wdτ

(
=
wd
2γ

)

Note that min Q= 0 because wd =
√
w2

0 − γ2

Event Q
Earthquakes 250-1400
Piano String 3000

Excited Atom 107

Excited Fe57 nucleus 1012

Page 3



PHYS 321A Lecture Notes 6 University of Victoria

Phase Space

Trajectory in the px plane: (p, x)

p = mẋ

Example: Simple Harmonic Oscillator

x(t) = A sin(w0t+ φ0) ẋ(t) = Aw0 cos(w0t+ φ0)

=⇒ x2

A2
+

(mẋ)2

m2w2
0A

2
= 1 =⇒ x2

A2
+

p2

m2w2
0A

2
(ellipse)

This is equivalent to energy conservation.

1

2
mw2

0x
2 +

p2

2m
=

1

2
mw2

0A
2 = E

Each ring represents different initial conditions, or different energies. We refer to these as
concentric ellipses.

Note: Trajectories in the plane can never cross. Proof: Each (x0, p0) leads to a unique
solution; if two different trajectories cross, the initial condition on the crossing point will
have two different solutions =⇒ absurd.
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Underdamped

Critically Damped

x(t) = [(v0 + γx0)t+ x0]e
−γt , ẋ(t) = (v0 + γx0)e

−γt − γ[(v0 + γx0)t+ x0]e
−γt

Note that

ẋ(t) = (v0 + γx0)e
−γt − γx

and hence we have that

ẋ+ γx = (v0 + γx0)e
−γt

As t becomes large, this approaches zero. Hence p+mγx→ 0 =⇒ approaches asymptoti-
cally to the straight line p = −(mγ)x
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Overdamped

For this part we assume v0 = 0

x(t) =
γ + q

2q
x0e

−(γ−q)t − γ − q
2q

x0e
−(γ+q)t

ẋ(t) = − (γ − q)
(
γ + q

2q

)
x0e

−(γ−q)t + (γ − q)
(
γ + q

2q

)
x0e

−(γ−q)t

= −(γ−q)
((

γ + q

2q

)
x0e

−(γ−q)t −
(
γ − q

2q

)
x0e

−(γ−q)t
)
−(γ − q)2

2q
x0e

−(γ+q)t+
γ2 − q2

2q
x0e

−(γ+q)t

These equations are rather cumbersome, but at this point, note that((
γ + q

2q

)
x0e

−(γ−q)t −
(
γ − q

2q

)
x0e

−(γ−q)t
)

= x

and thus we conclude that

ẋ+ (γ − q)x = (γ − q)x0e−(γ+q)t → 0

p+m(γ − q)x→ 0

Page 6


