PHYS 321A Lecture Notes 6 University of Victoria

Lecture 6: Damped Harmonic Motion: Energy,
Quality Factor, Phase Space

Review from last lecture:

mi =—kr—cv = |i+2yi+wir=0

c Ik
= —_— w e —_—
v m ) 0 m

(i) Overdamping;:

z(t) = Ale—(v—q)t + AQG—(erq)t g=1/~2— w%
(ii) Critical Damping:
z(t) = ((vo + yxo)t + x0)e "

(iii) Underdamping;:

z(t) = Ae " sin(wgt + ¢p) wg =/ wi — 2| < wy

For example:

.'-;_ ."-.__l.]\rerdamped

Erit1ca.1-"";;.',.
damping: -

f Underdamped
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Energy Loss

1 1
E = §mx2 + 5]{?1’2

dE

— = mid +ked = (mi + kx)i = —ci? <0

Hence dE/dt < 0 always and E — 0. We also have
(Mm& + k)t = Fuamping® (= Fv)

Recall that Power= Fw.

Quality Factor

For a weakly damped system, () >> 1. For a strongly damped system, Q) ~ 1 or ) << 1.
@ is defined as

E
[AE]

Q=2m

We can think of E/|AE| as 1/fraction of energy lost per cycle. (This concept only applies

to underdamped systems!)
T, T,
AE_/ Edt——c/ dti?
0 0

We will use

z(t) = Ae Msin(wgt) = i(t) = Awge " cos(wgt) — Aye " sin(wqt)

Hence we have
Ty
AE = —c/ dt[A?wy*e™ 2" cos? (wat) — 2A%waye 2" sin(wgt) cos(wgt) + A*y e sin® (wqt )]
0

Now let § = wgt = dt = df/w,.
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2 27
AE =~ —ﬂe%t/ dO[w3 cos? () — 2wgy sin(0) cos(#) + 72 sin?(0)]
0

Wy
Recall that cos? @ = (1 + cos26)/2 and sin? § = (1 — cos 20)/2. Hence

. T
2me " = — cA%wi | —
Wq

cA? [wi + 7]
Wq 2

AFE =~ ) e = —myARwiTye "

In the line above, we use the fact that w3 ++? = w} and that ¢ = 2m~y. If we write 2y = 1/7
we have

1 T, AE| T,
AFE = — (ﬁmngQG_t/T> (—d) — IAE] -4

T

E 2 2
0= 2 T T ot <: %>

|AFE] T T 27 Jwy 2
Note that min Q= 0 because wg = /w3 — 2
Event Q
Earthquakes 250-1400
Piano String 3000
Excited Atom 107
Excited Fe®” nucleus 1012
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Phase Space

Trajectory in the px plane: (p,x)
P =m

Example: Simple Harmonic Oscillator

x(t) = Asin(wot + ¢p)

x? (m)?

e —_— _ = 1
A2 m2wiA?

This is equivalent to energy conservation.

1 2
—mwiz® + b

2 2m

%(t) = Awg cos(wot + ¢o)

.172 p2
- ﬁ + W (elhpse)
1 2 A2
= §mw0A =F

T T T T

Figure 3.5.1 Phase-space

=

plot for the simple harmonic
oscillator (a3, =0.5571). No
damping force (y=0s7").

Each ring represents different initial conditions, or different energies. We

concentric ellipses.

! 1
0 1 2 3 4

=

refer to these as

Note: Trajectories in the plane can never cross. Proof: Each (zg,po) leads to a unique
solution; if two different trajectories cross, the initial condition on the crossing point will

have two different solutions = absurd.
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Underdamped

0.4 T T T

Critically Damped

w(t) = [(vo + ywo)t + mole™™ , &(t) = (vo + yxo)e " — y[(vo + Vo)t + ol

Note that

i(t) = (vo + ywo)e " —yx

and hence we have that

i+ yx = (vg + yxo)e "

As t becomes large, this approaches zero. Hence p + myr — 0 = approaches asymptoti-
cally to the straight line p = —(m-~)x

O T L} T 1
-0.1 i
0.2 r ]
x .,

03 F '—I +yx=0 i

-04 1 -
Figure 3.54 Phase-space plot for -05 ' = - ;
the simp]e harmonic oscillator {% = 0 0.2 04 0.6 0.8 1
0.5 s71). Critical damping (Y= 0.5s71). x
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Overdamped

For this part we assume vy = 0

2q 2q

. Y+q ~(y—q)t Yt4q —(r—q)t
H = — (~— R 7—4q _ S 1 7—4q
o (t) (v q)( 2 )xoe + (v q)( 2g ) o

2 2 2
= —(y—q) Tty zoe” (O =4 zoe~ (" _uxoe—(v+Q)t+7 — 4 g~ (Tt
2q 2q 2q 2q

These equations are rather cumbersome, but at this point, note that

THDY et — (X9 o~} —
2q 2q

and thus we conclude that

i+ (y—q)r = (v — qQ)zoe "V =0
p+m(y—qx —0

0 I I T T T
~0.05 |
%
-0.1 . .
X+ (y-q)x=0 -

Figure 3.5.5 Phase-space plot for
the simple harmonic oscillator ~0.15 ! ! L L
(@ =0.5 s™). Overdamping 0 0.2 04 0.6 038 1
(y=1s7). x
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