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Lecture 7: Forced Harmonic Motion and Resonance

We have

mẍ = −kx− cẋ+ F0 cos(ωt)

ẍ+ 2γẋ+ w2
0x =

(
F0

m

)
cos(ωt)

Our goal is to find a steady state solution (the solution that does not die out when
t→∞). We consider seperate cases.

Case γ = 0: We guess that

x(t) = A cos(ωt− φ) (A > 0)

ẍ+ w2
0x =

(
F0

m

)
cos(ωt) =⇒ (−Aω2 + Aω2

0) cos(ωt− φ) =

(
F0

m

)
cos(ωt)

=⇒ A cos(ωt− φ) =
F0/m

ω2
0 − ω2

· cos(ωt)

=⇒


ω < ω0 =⇒ A = F0/m

ω2
0−ω2

ω > ω0 =⇒ A = F0/m

ω2−ω2
0
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Case γ > 0:

We assume that F = F0e
iωt:

ẍ+ 2γẋ+ w2
0x =

(
F0

m
eiwt
)

Try:

x(t) = Aei(wt−φ)

=⇒ [−w2 + 2γwi+ w2
0]Ae

i(wt−φ) =
F0

m
eiwt

A((w2
0 − w2) + 2γwi) =

F0

m
eiφ =

F0

m
(cos(φ) + i sin(φ))

We take the real and imaginary roots:

{
A(w2

0 − w2) = F0

m
cosφ

A · 2γw = F0

m
sinφ

We divide to get:

tanφ =
2γw

w2
0 − w2

(Define the domain of φ ∈ [0, π]). We now add the squares:

(
F0

m

)2

= A2[(w2
0 − w2)2 + 4γ2w2]

=⇒ A(w) =
F0/m

[(w2
0 − w2)2 + 4γ2w2]1/2
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The graphs below plot amplitude A/(F0/k) and phase shift φ for different values of γ as a
function of n = ω/ω0

=⇒ our previous result when γ → 0.

Resonance frequency?
dA(w)

dw

∣∣∣∣∣
w=wr

= 0

=⇒ −1/2

[(w2
0 − w2)2 + 4γ2w2]3/2

· d
dw

[(w2
0 − w2)2 + 4γ2w2] = 0

2× (−2wr)× (w2
0 − w2

r) + 8γ2wr = 0

8γ2wr = 4wr(w
2
0 − w2

r) =⇒ 2γ2 = w2
0 − w2

r =⇒ w2
r = w2

0 − 2γ2

Note: wr < w0 and w2
r = w2

d − γ2
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Also, we have no resonance for γ > w0/
√

2 (wr is complex in this case!) because A(w)
decreases monotonically with w:

A(w)|γ=w0/2 =
F0/m

[(w2
0 − w2)2 +

4w2
0

2
w2]1/2

=
F0/m

[w4
0 + w4 − 2w2

0w
2 + 2w2

0w
2]1/2

=
F0/m

[w4
0 + w4]1/2

and hence we have no resonance!

Maximum Amplitude, Quality Factor

Amax = A(w = wr) =
F0/m

[(w2
0 − w2

0 + 2γ2)2 + 4γ2(w2
0 − 2γ2)]1/2

=
F0/m

[4γ4 − 8γ4 + 4γ2w2
0]

1/2
=

F0/m

2γ[w2
0 − γ2]1/2

If we suppose that γ << w0 we get that

Amax ≈
F0

2γmw0

∝ 1

γ
→∞ when γ → 0

For γ << w0, w2
0 − w2 = (w0 + w)(w0 − w) ≈ 2w0(w0 − w)

4γ2w2 ≈ 4γ2w2
0

=⇒ A(w) ≈ F0/m√
4w2

0(w
2
0 − w2) + 4γ2w2

0

=
F0

2mw0

· 1√
(w2

0 − w2) + γ2

A(w) ≈ Amaxγ√
(w2

0 − w2) + γ2

Note: A2(w = w0±γ) = (Amax/
√

2)2 = Amax
2 =⇒ (∆w) = 2γ (width of resonance)
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Recall that

P =
wd
2γ
≈ w0

2γ
=

w0

∆w

=⇒ ∆w

w0

≈ 1

Q

The “sharpness” of the resonance can be quantified by how high the quality factor is!

Also,
Amax

A(w = 0)
=

F0

2mw0γ

F0

mw2
0

=
w0

2γ
= Q =⇒ Amax

A(w = 0)
= Q

At resonance, transfer of energy is “optimal”:

P = Fv

x(t) = A(w) cos(wt− φ)

When w = wr and φ = π/2 we get

x(t) = A(wr) cos(wrt− π/2) = A(wr) sin(wrt)

ẋ(t) = wrA(wr) cos(wrt)

ẋ is in phase with F = F0 cos(wt) =⇒ Fv = F0wrA(wr) cos2(wrt). Hence the optimal way
to push a swing is to push it when its velocity is maximum!

< Fv >get−optimum =
F0wrA(wr)

2
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