Lecture 8: Non-Linear Oscillator, Chaos

Consider a non-linear restoring force

$$
F(x)=-k x+\epsilon(x)=-k x+\epsilon_{2}(x)+\epsilon_{3}(x)+\epsilon_{4}(x)+\ldots
$$

Let us assume that

$$
\begin{gathered}
\left\{\begin{array}{l}
V(-x)=+V(x) \quad \text { (INVERSION SYMMETRY) } \\
F(-x)=-F(x) \quad \text { and keep only up to third order }
\end{array}\right. \\
m \ddot{x}=-k x+\epsilon_{3} x^{3} \\
\ddot{x}+w_{0}^{2} x=\lambda x^{3} \quad \text { where } \quad \lambda=\epsilon_{3} / m
\end{gathered}
$$

Method of successive approximations: We try

$$
\begin{gathered}
x^{(0)}(t)=A \cos (w t) \quad \text { "zeroth order" trial } \\
\Longrightarrow\left(w_{0}^{2}-w^{2}\right) A \cos (w t)=\lambda A^{3} \cos ^{3}(w t)=\lambda A^{3}\left(\frac{3}{4} \cos (w t)+\frac{1}{4} \cos (3 w t)\right) \\
\Longrightarrow\left(w_{0}^{2}-\frac{3}{4} \lambda A^{2}-w^{2}\right) A \cos (w t)=\frac{\lambda A^{3}}{4} \cos (3 w t)
\end{gathered}
$$

The zeroth order approximation for w is obtained by setting the brackets to zero:

$$
\Longrightarrow \quad \begin{aligned}
& w=\sqrt{w_{0}^{2}-\frac{3}{4} \lambda A^{2}}
\end{aligned} \text { This should be valid for small A and small } \lambda
$$

The actual frequency of a non linear oscillator depends on amplitude

The next level of approximation is to take

$$
x^{(1)}(t)=A \cos (w t)+B \cos (3 w t)
$$

We now let $\theta=w t$. Hence we have

$$
\begin{gathered}
\lambda\left(x^{(1)}\right)^{3}=\lambda\left(A^{3} \cos ^{3}(\theta)+3 A^{2} \cos ^{2}(\theta) B \cos (3 \theta)+3 A \cos (\theta) B^{2} \cos ^{2}(3 \theta)+B^{3} \cos ^{3}(3 \theta)\right) \\
=\lambda\left[A^{3}\left(\frac{3}{4} \cos (\theta)+\frac{1}{4} \cos (3 \theta)\right)+3 A^{2} B\left(\frac{1}{4} \cos (\theta)+\frac{1}{2} \cos (3 \theta)+\frac{1}{4} \cos (5 \theta)\right)\right. \\
\left.+3 A B^{2}\left(\frac{1}{2} \cos (\theta)+\frac{1}{4} \cos (5 \theta)+\frac{1}{4} \cos (7 \theta)\right)+B^{3}\left(\frac{3}{4} \cos (3 \theta)+\frac{1}{4} \cos (9 \theta)\right)\right] \\
\Longrightarrow \lambda\left(x^{(1)}\right)^{3}=\frac{3}{4} \lambda A^{3} \cos (\theta)+\frac{1}{4} \lambda A^{3} \cos (3 \theta)+O\left(\lambda B, \lambda B^{2}, \lambda B^{3}\right)
\end{gathered}
$$

Later, we will show that $B \propto \lambda$ and therefore that the last term is $O\left(\lambda^{2}\right)$!

$$
\begin{gathered}
\ddot{x}+w_{0}^{2} x=\lambda x^{3} \\
\Longrightarrow\left(w_{0}^{2}-\frac{3}{4} \lambda A^{2}-w^{2}\right) A \cos (w t)+\left(B w_{0}^{2}-9 B w^{2}-\frac{1}{4} \lambda A^{3}\right) \cos (3 w t)=O\left(\lambda^{2}\right) \approx 0
\end{gathered}
$$

We examine the expression above. The first term is the same as before:

$$
w^{2}=w_{0}^{2}-\frac{3}{4} \lambda A^{2}
$$

The second term implies that

$$
\begin{gathered}
B\left(w_{0}^{2}-9 w^{2}\right)=\frac{1}{4} \lambda A^{3} \quad \Longrightarrow \quad B=\frac{1}{4} \cdot \frac{\lambda A^{3}}{\left(w_{0}^{2}-9 w_{0}^{2}+(27 / 4) \lambda A^{2}\right)} \approx-\frac{\lambda A^{3}}{32 w_{0}^{2}} \\
\Longrightarrow \quad x^{(1)}(t)=A \cos (w t)-\frac{\lambda A^{3}}{32 w_{0}^{2}} \cos (3 w t) \quad \Longrightarrow \quad \text { 3rd Harmonic! }
\end{gathered}
$$

What if $\epsilon_{2} x^{2}$ is kept? In that case, we'd get a 2 nd harmonic.
Experiment: 2nd harmonic generator, lasers on crystals:

Probes whether the crystal has an inversion center or not.

$$
x^{(2)}(t)=A \cos (w t)+B \cos (3 w t)+c \cos (5 w t) \quad c \propto \lambda^{2}
$$

Non linear effects include that the period depends on amplitude, and that higher harmonics are present.

Example: Simple Pendulum:

$$
\ddot{\theta}+\left(\frac{g}{l}\right) \sin (\theta)=0 \quad \Longrightarrow \quad \ddot{\theta}+\frac{g}{l} \theta=\frac{1}{3!}\left(\frac{g}{l}\right) \theta^{3}
$$

The result above is obtained by expanding the taylor series for $\sin (\theta)$. Rewriting g / l as w_{0}^{2} yields

$$
\ddot{\theta}+w_{0}^{2} \theta=\frac{w_{0}^{2}}{3!} \theta^{3}
$$

We write $w_{0}^{2} / 3!=\lambda$.

$$
\begin{gathered}
\Longrightarrow w^{2}=w_{0}^{2}-\frac{3}{4} \lambda A^{2} \\
w^{2}=w_{0}^{2}-\frac{3}{4} \frac{w_{0}^{2}}{6} A^{2}=w_{0}^{2}\left[1-\frac{A^{2}}{8}\right] \\
T=\frac{2 \pi}{w}=\frac{2 \pi}{w_{0}} \frac{1}{\sqrt{1-\left(A^{2} / 8\right)}} \Longrightarrow\left(\frac{T}{T_{0}}\right)_{\text {approx }}=\frac{1}{\sqrt{1-\left(A^{2} / 8\right)}}>1
\end{gathered}
$$

How good is this approximation? Using energy conservation, we can show that

$$
\left(\frac{T}{T_{0}}\right)_{\text {exact }}=\frac{\sqrt{2}}{\pi} \int_{0}^{A} \frac{d \theta}{\sqrt{\cos (\theta)-\cos (A)}}
$$

The approximate solution goes to $t=\infty$ for $A=\sqrt{8}=2.83<\pi$. The exact solution goes to $t=\infty$ at $A=\pi$.

The approximation is very good for $A<\pi / 2$. We will now examine the double pendulum and discuss chaos (sensitivity to initial conditions).

Chaos

$\underline{\text { Pendulum Subject to an Oscillatory Force }}$

$$
\ddot{\theta}+\gamma \dot{\theta}+w_{0}^{2} \sin (\theta)=\alpha \cos \left(w_{f} t\right)
$$

We transform this equation into 3 first order ones:

$$
\left\{\begin{array}{l}
\dot{\theta}=y \\
\dot{y}=-\gamma y=w_{0}^{2} \sin (\theta)+\alpha \cos (z) \\
\dot{z}=w_{f} \Longrightarrow z=w_{f} t
\end{array}\right.
$$

$\underline{\text { Numerical Solutions: }} w_{f}=(2 / 3) w_{0} \quad, \quad \gamma=(1 / 2) w_{0}$
(i)

$$
\alpha=0.9 w_{0}^{2}
$$

Figure 3.8.2 Three-dimensional phase-space plot of a driven, damped simple pendulum. The driving parameter is $\alpha=0.9$. The driving angular frequency ω and damping parameter γ are $\frac{2}{3}$ and $\frac{1}{2}$ respectively. Coordinates plotted are $x=\theta / 2 \pi, y=\dot{\theta}, z=\omega t / 2 \pi$.

$\underline{\theta=0 \quad, \quad \dot{\theta}=0:}$
After a transient, $t \sim 1 / \gamma$. There is periodic behaviour at frequency w_{f}.

Stable, repeatable, periodic
(ii) $\alpha=1.07 w_{0}^{2} \quad \Longrightarrow \quad$ "Period Doubling"

Period doubling! The system repeats itself every $t=2 \times 2 \pi / w$!
(iii)

$$
\alpha=1.15 w_{0}^{2}
$$

We define two starting coordinates:

$$
\begin{cases}\theta_{1}=-0.9 \pi & , \quad \dot{\theta_{1}}=0.54660 w_{0} \\ \theta_{2}=-0.9 \pi & , \quad \dot{\theta_{2}}=0.54661 w_{0}\end{cases}
$$

Note how similar the starting conditions are. Observe the phase space y vs. θ below

Trajectories 1 and 2 coincide for the first ~ 3 cycles. However, after 98 cycles, 1 and 2 are completely different. This extreme sensitivity to initial conditions leads to unpredictability.

\rightarrow after 98 cycles, system does not have a single period
(iv) $\alpha=1.50 w_{0}^{2} \Longrightarrow$ Never repeats itself!

For $\alpha>\alpha_{\text {chaos }}$, the system never repeats itself:

