Lecture 9: Motion in 3d

Newton's laws imply that

$$
\begin{gathered}
\left\{\begin{array}{l}
\vec{p}=m \vec{v} \\
\vec{F}=d \vec{p} / d t
\end{array}\right. \\
\Longrightarrow \vec{F} \cdot \vec{v}=\frac{\vec{p}}{d t} \cdot \vec{v}=\frac{d}{d t}\left(m \vec{v}^{2}\right)=\frac{d}{d t}(T)
\end{gathered}
$$

Where we define T as kinetic energy. We now have that

$$
\int_{i}^{f} d t \vec{F} \cdot \frac{d \vec{r}}{d t}=\int_{i}^{f} \frac{d}{d t}(T) d t
$$

Note how the $d t$'s cancel out on each side of the equation. It follows that

$$
\int_{\overrightarrow{r_{a}}}^{\overrightarrow{r_{b}}} \vec{F} \cdot d \vec{r}=\left(T_{f}-T_{i}\right)=\Delta T \quad \text { (Work-Kinetic Energy Theorem) }
$$

What is the criteria on \vec{F} such that the work done on the LHS can be written as potential energy? For this we consider different types of force fields.

Conservative vs Non-Conservative Force Fields

Consider $\vec{F}(\vec{r})=b(-y, x)$ (left) and $\vec{F}(\vec{r})=b(y, x)$ (right)

For which force fields can we define a potential function such that

$$
V\left(\overrightarrow{r_{f}}\right)-V\left(\overrightarrow{r_{i}}\right)=-\int_{\overrightarrow{r_{i}}}^{\overrightarrow{r_{f}}} \vec{F} \cdot d \vec{r}
$$

Note: This definition implies $-\left(V_{f}-V_{i}\right)=T_{f}-T_{i} \quad \Longrightarrow \quad V_{i}+T_{i}=V_{f}+T_{f}$ which is the law of conservation of energy!

To be able to describe \vec{F} by a potential $V(\vec{r})$, we must have:

$$
\begin{array}{ll}
\int_{\overrightarrow{r_{i}}}^{\overrightarrow{r_{f}}} \vec{F} \cdot d \vec{r}= & \int_{\overrightarrow{r_{i}}}^{\overrightarrow{r_{f}}} \vec{F} \cdot d \vec{r} \\
\text { Path A } & \text { Path B }
\end{array}
$$

Otherwise, the definition of V below does not depend just on $\overrightarrow{r_{i}}, \overrightarrow{r_{f}}$, but also on the path. In other words, V must be uniquely defined!

$$
\begin{array}{cc}
\int_{\overrightarrow{r_{i}}}^{\overrightarrow{r_{f}}} \vec{F} \cdot d \vec{r} & -\int_{\overrightarrow{r_{i}}}^{\overrightarrow{r_{f}}} \vec{F} \cdot d \vec{r}=0 \\
\text { Path A } & \text { Path B } \\
& \\
& \oint \vec{F} \cdot d \vec{r}=0
\end{array}
$$

The integral with the circle on it simply means "for all closed paths."

Stoke's Theorem:

$$
\oint \vec{F} \cdot d \vec{r}=\iint \vec{\nabla} \times \vec{F} \cdot \hat{m} d A=0 \Longleftrightarrow \vec{\nabla} \times \vec{F}=0 \quad \text { at all points }
$$

Recall that the second integral is the area enclosed by the path and that $\vec{\nabla}=<\partial x, \partial y, \partial z>$. One way to get $\vec{\nabla} \times \vec{F}=0$ at all points is to have

$$
\vec{F}=-\vec{\nabla} V \quad, \quad \text { because } \quad \vec{\nabla} \times \vec{F}=-\vec{\nabla} \times \vec{\nabla} V=0
$$

But there exists some force fields \vec{F} that can be written as $\vec{F}=-\vec{\nabla} V$ but that $\vec{\nabla} \times \vec{F}$ does not exist (because second derivatives $d^{2} V / d x^{2}$ does not exist.
$\Longrightarrow \quad$ See Amer. J. Phys. 37,616 (1969).

Back to our Example

$$
\begin{gathered}
\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\left(\partial_{y} F_{z}-\partial_{z} F_{y}\right) \hat{i}+\left(\partial_{z} F_{x}-\partial_{x} F_{z}\right) \hat{j}+\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) \hat{k} \\
=\epsilon_{i j k} \partial_{g} \cdot F_{k} \quad \text { (The Levi-Coveta Tensor) }
\end{gathered}
$$

Is $\vec{F}_{1}(\vec{n})=b(-y, x)$ conservative?

$$
\vec{\nabla} \times \vec{F}_{1}=\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) \hat{k}=(b-(-b)) \hat{k}=2 b \hat{k} \quad \neq \quad \overrightarrow{0} \quad \text { Non Conservative }
$$

Is $\vec{F}_{2}(\vec{n})=b(y, x)$ conservative?

$$
\vec{\nabla} \times \vec{F}_{2}=\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) \hat{k}=(b-(b)) \hat{k}=\overrightarrow{0} \quad \text { Conservative }
$$

