Lecture 11: Motion of Charged Particles in Electric and Magnetic Fields

Electric Field:

$$
\begin{gathered}
\vec{F}=q \vec{E} \quad \Longrightarrow \quad m \frac{d^{2} \vec{r}}{d t^{2}}=q \vec{E} \\
\vec{E}=E \hat{k} \quad \Longrightarrow \quad\left\{\begin{array}{l}
m \ddot{x}=0 \\
m \ddot{y}=0 \\
m \ddot{z}=q E
\end{array} \quad \Longrightarrow \vec{r}(t)=\vec{v}(t)+\frac{1}{2}\left(\frac{q E}{m}\right) \hat{k} t^{2}\right.
\end{gathered}
$$

Magnetic Field:

$$
\vec{F}=q(\vec{v} \times \vec{B}) \quad \text { (Lorentz force in S.I. units) }
$$

\Longrightarrow acceleration always $\perp \vec{v} \Longrightarrow \quad$ speed is constant! (No tangential acceleration)

Suppose that $\vec{B}=B \hat{k}$. It follows that

$$
\begin{aligned}
& m \frac{d^{2} \vec{r}}{d t^{2}}=q B(\vec{v} \times \vec{k})=q B\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
\dot{x} & \dot{y} & \dot{z} \\
0 & 0 & 1
\end{array}\right|=q B(\dot{y} \hat{i}-\dot{x} \hat{j}) \\
& \\
& \Longrightarrow\left\{\begin{array}{l}
m \ddot{x}=q B \dot{y} \\
m \ddot{y}=-q B \dot{x} \\
m \ddot{z}=0 \Longrightarrow \dot{z}=\dot{z}_{0} \quad, \quad z=z_{0}+\dot{z}_{0} t
\end{array}\right.
\end{aligned}
$$

This is not separable but it is easy to solve:

$$
\begin{aligned}
& m \int \frac{d \dot{x}}{d t} d t=q B \int \frac{d y}{d t} d t \quad \Longrightarrow \quad m\left(\dot{x}-\dot{x}_{0}\right)=q B\left(y-y_{0}\right) \quad \Longrightarrow \quad \dot{x}=\frac{q B}{m} y+C_{1} \\
& m \int \frac{d \dot{y}}{d t} d t=-q B \int \frac{d x}{d t} d t \quad \Longrightarrow \quad m\left(\dot{y}-\dot{y}_{0}\right)=q B\left(x-x_{0}\right) \quad \Longrightarrow \quad \dot{y}=-\frac{q B}{m} x+C_{2}
\end{aligned}
$$

We define the "cyclotron" frequency $w_{c}=q B / m$.
$\left(q=e\right.$ and $B=1 T \Longrightarrow w_{c}=10^{15} \mathrm{rad} / \mathrm{s}$. For a red laser, $w=3 \times 10^{15} \mathrm{rad} / \mathrm{s}$ and $\lambda=600 \mathrm{~nm})$.

We take $d / d t$ of both sides:

$$
\begin{gathered}
\ddot{x}=w_{c} \dot{y}=w_{c}\left(-w_{c} x+C_{2}\right) \quad \Longrightarrow \quad \ddot{x}+w_{c}^{2} x=w_{c} C_{2} \\
\ddot{y}=-w_{c} \dot{x}=-w_{c}\left(w_{c} y+C_{1}\right) \quad \Longrightarrow \quad \ddot{y}+w_{c}^{2} y=-w_{c} C_{1}
\end{gathered}
$$

We now define $a \equiv C_{2} / w_{c}$ and $b=C_{1} / w_{c}$.

$$
\begin{gathered}
\ddot{x}+w_{c}^{2} x=w_{c}^{2} a \Longrightarrow x(t)=a+A \cos \left(w_{c} t+\theta_{0}\right) \\
y=\frac{\dot{x}-C_{1}}{w_{c}}=\frac{\dot{x}+w_{c} b}{w_{c}}=\frac{-w_{c} A \sin \left(w_{c} t+\theta_{0}\right)+b w_{c}}{w_{c}} \Longrightarrow y(t)=b-A \sin \left(w_{c} t+\theta_{0}\right)
\end{gathered}
$$

It follows that

$$
(x-a)^{2}+(y-b)^{2}=A^{2}
$$

This is a circle centered at (a, b) with radius A :

Figure 4.5.1 The helical path of a particle moving in a magnetic field.

The path is a helix along \vec{B} (if \dot{z}_{0}, the path is a closed circle in the xy plane!). In this way, the magnetic field "confines" the motion of charged particles:

$$
\begin{gathered}
\dot{y}=-w_{c} A \cos \left(w_{c} t+\theta_{0}\right) \\
\left(\dot{x}^{2}+\dot{y}^{2}\right)=w_{c}^{2} A^{2}=v_{\perp}^{2}=v_{0}^{2} \Longrightarrow A=\frac{v_{0}}{q B / m}=v_{0} \frac{m}{q B} \propto \frac{1}{B}
\end{gathered}
$$

Note that $v_{\perp}^{2}=v_{0}^{2}$ because \vec{F} is perpendicular to \vec{v} always. The result above implies that the radius of the circle is proportional to $1 / B$.

Constrained Motion of a Particle

where \vec{R} is the constraint. We suppose for now that \vec{F} is conservative. Note that $\vec{R} \cdot \vec{v}=0$ for a "smooth constraint" (no friction).

$$
\begin{aligned}
\Longrightarrow \frac{d}{d t}\left(\frac{1}{2} m \vec{v}^{2}\right) & =\vec{F} \cdot \vec{v} \Longrightarrow d\left(\frac{1}{2} m \vec{v}^{2}\right)=\vec{F} \cdot d \vec{r}=d W=-d V \\
& \Longrightarrow \frac{1}{2} m v^{2}+V(\vec{r})=E=\mathrm{const}
\end{aligned}
$$

Example: Particle Sliding on a smooth sphere. When does it detach?

Figure 4.6.1 A particle sliding on a smooth sphere.

$$
\frac{1}{2} m v^{2}+m g z=E=m g a
$$

The last equality is true because the particle starts from rest.

$$
\Longrightarrow \quad v^{2}=2 g(a-z)
$$

In addition, we have

$$
m \frac{d^{2} \vec{r}}{d t^{2}}=m \vec{g}+\vec{R}
$$

Radial:

$$
\begin{aligned}
m a_{r} & =-m g \cos \theta+R \\
m\left(-\frac{v^{2}}{a}\right) & =-m g\left(\frac{z}{a}\right)+R \quad \Longrightarrow \quad R=\left(\frac{m g}{a}\right) z-\left(\frac{m}{a}\right) v^{2}
\end{aligned}
$$

Since $v^{2}=2 g(a-z)$ we have that

$$
\begin{gathered}
R(z)=m g\left(\frac{z}{a}\right)-\left(\frac{m}{a}\right) 2 g(a-z)=-2 m g+3 m g\left(\frac{z}{a}\right) \\
R(z)=m g\left(\frac{3 z}{a}-2\right)
\end{gathered}
$$

When does it detach? When $m g \cos \theta<m v^{2} / a \Longrightarrow R<0$. This occurs because the weight is not strong enough to hold the particle in a circular path.

Note that $R=0$ for $z=(2 / 3) a$.

