Lecture 12: Non-Inertial Reference Systems

σ is inertial reference system, σ^{\prime} is not:

Figure 5.1.1 Relationship between the position vectors for two coordinate systems undergoing pure translation relative to each other.

$$
\begin{aligned}
\vec{r}=\vec{R}_{\sigma} & +\vec{r}^{\prime} \\
\frac{d}{d t} \vec{r}=\frac{d \vec{R}_{\sigma}}{d t}+\frac{d \vec{r}^{\prime}}{d t} & \Longrightarrow \vec{v}=\vec{V}_{\sigma}+\vec{v}^{\prime} \\
& \Longrightarrow \vec{a}=\vec{a}_{\sigma}+\vec{a}^{\prime}
\end{aligned}
$$

Newton's Second law for σ :

$$
\begin{aligned}
\Sigma \vec{F} & =m \vec{a} \\
& =m\left(\vec{a}_{\sigma}+\vec{a}^{\prime}\right)
\end{aligned}
$$

Newton's Second law in a non inertial system:

$$
\Sigma \vec{F}-m \vec{a}_{\sigma}=m \vec{a}
$$

We call $-m \vec{a}_{\sigma}$ the inertial force or "fictitious force" (yet it is quite real actually).

Example 1:

$\vec{a}_{T} \longrightarrow$

Susan Sees:

$$
\begin{aligned}
& F_{x}^{\prime}=-m \vec{a}_{T} \\
& \left\{\begin{array}{l}
T \cos \theta-m g=m a_{y}=0 \\
T \sin \theta-m a_{T}=m a_{x}=0
\end{array} \quad \Longrightarrow a_{T}=g \tan \theta\right.
\end{aligned}
$$

Bob Sees:

$$
\begin{gathered}
\left\{\begin{array}{c}
T \cos \theta-m g=m a_{y}=0 \\
T \sin \theta=m a_{x}=m a_{T} \neq 0
\end{array}\right. \\
\Longrightarrow \frac{m g}{\cos \theta} \sin \theta=m a_{T} \\
g \tan \theta=a_{T}
\end{gathered}
$$

Example 2:

Consider a spaceship accelerating upwards with $\vec{a}_{\sigma}=\vec{g}=g \vec{j}$

Figure 5.1.3 Two astronauts throwing a ball in a spaceship accelerating at $\left|\mathbf{A}_{0}\right|=|\mathrm{g}|$.

Two astronauts are 10 m away from each other. Astronaut 1 throws a ball at astronaut 2 with constant velocity $\vec{v}_{0}=v_{0} \hat{i}$. What is the minimum speed v_{0} such that the ball reaches astronaut 2 without touching the floor?

(a): Non-Inertial Reference Frame

Force $-m g \hat{j}$ pulling everything downwards!

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{\prime}(t)=\dot{x}_{0} t \\
y^{\prime}(t)=y_{0}^{\prime}-(1 / 2) g t^{2}
\end{array} \quad \Longrightarrow \quad y^{\prime}=y_{0}^{\prime}-\frac{g}{2\left(\dot{\left.x_{0}\right)^{2}}\right.} \cdot x^{\prime 2}\right. \\
& 0=y_{0}^{\prime}-\frac{g}{2\left(\dot{\left.x_{0}\right)^{2}}\right.} \cdot x^{\prime 2} \quad \Longrightarrow \quad \frac{g}{2\left(\dot{\left.x_{0}\right)^{2}}\right.} \cdot x^{\prime 2}=y_{0}^{\prime}
\end{aligned} \quad \begin{aligned}
& \quad \Longrightarrow \quad \dot{x}_{0}^{\prime}=\sqrt{\frac{g}{2 y_{0}^{\prime}}} \cdot x^{\prime}=\sqrt{\frac{9.8}{2 \times 2}} \times 10=15.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b): Inertial Reference Frame

The ball is thrown diagonally with constant velocity and no acceleration. The floor of the rocket is accelerating upwards at \vec{g}.

We have that

$$
\left\{\begin{array} { l }
{ y _ { b } = y _ { 0 } + \dot { y } _ { 0 } t } \\
{ x _ { b } = \dot { x } _ { 0 } t }
\end{array} \quad \left\{y_{\text {floor }}=\dot{y}_{0} t+(1 / 2) g t^{2}\right.\right.
$$

and hence it follows that

$$
\begin{aligned}
y_{b}=y_{f l o o r} & \Longrightarrow y_{0}+\dot{y}_{0} t=\dot{y}_{0} t+\frac{1}{2} g t^{2} \quad \Longrightarrow \quad t=\sqrt{\frac{2 y_{0}}{g}} \\
x_{b} & =\dot{x}_{0} \sqrt{\frac{2 y_{0}}{g}} \Longrightarrow \dot{x}_{0}=\sqrt{\frac{g}{2 y_{0}}} \cdot x_{b}
\end{aligned}
$$

Rotating Coordinate Systems

Figure 5.2.1 The angular velocity vector of a rotating coordinate system.

$\vec{w}=w \vec{n}$ is the angular velocity. The direction is given by the right hand rule. In addition

$$
w=2 \pi / T
$$

Transformation rules for the velocities? The origin is the same, therefore

$$
\begin{gathered}
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}=x^{\prime} \hat{i}^{\prime}+y^{\prime} \hat{j}^{\prime}+z^{\prime} \hat{k}^{\prime} \\
\frac{d}{d t} \vec{r}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}=\left(\frac{d x^{\prime}}{d t} \hat{i}^{\prime}+\frac{d y^{\prime}}{d t} \hat{j}^{\prime}+\frac{d z^{\prime}}{d t} \hat{k}^{\prime}\right)+x^{\prime} \frac{d \hat{i}^{\prime}}{d t}+y^{\prime} \frac{d \hat{j}^{\prime}}{d t}+z^{\prime} \frac{d \hat{k}^{\prime}}{d t} \\
\Longrightarrow \vec{v}=\vec{v}^{\prime}+x^{\prime} \frac{d \hat{i}^{\prime}}{d t}+y^{\prime} \frac{d \hat{j}^{\prime}}{d t}+z^{\prime} \frac{d \hat{k}^{\prime}}{d t}
\end{gathered}
$$

Figure 5.2.3 Change in the unit vector i^{\prime} produced by a small rotation $\Delta \theta$.

$$
\left|\frac{d \hat{i^{\prime}}}{d t}\right|=\lim _{\Delta t \rightarrow 0} \frac{\left|\Delta \hat{i}^{\prime}\right|}{\Delta t}=\sin \phi \frac{\Delta \theta}{\Delta t}=w \sin \phi
$$

also, $\frac{d \hat{i}^{\prime}}{d t} \perp \hat{i}^{\prime}, \vec{w}_{0} \Longrightarrow \frac{d \hat{i}^{\prime}}{d t}=\vec{w} \times \vec{i}^{\prime} \quad\left(\right.$ Similarily, $\left.\frac{d \hat{j}^{\prime}}{d t}=\vec{w} \times \vec{j}^{\prime} \quad, \quad \frac{d \hat{k}^{\prime}}{d t}=\vec{w} \times \vec{k}^{\prime}\right)$
Therefore:

$$
\begin{gathered}
\vec{v}=\vec{v}^{\prime}+\vec{w} \times \vec{r}^{\prime} \\
\left(\frac{d \vec{r}}{d t}\right)_{\text {fixed }}=\left(\frac{d \vec{r}^{\prime}}{d t}\right)_{n o t}+\vec{w} \times \vec{r}^{\prime}=\left[\left(\frac{d}{d t}\right)_{n o t}+\vec{w} \times\right] \vec{r}^{\prime}
\end{gathered}
$$

Applies to any vector! For example, velocity:

$$
\left(\frac{d \vec{v}}{d t}\right)_{\text {fixed }}=\left(\frac{d \vec{v}}{d t}\right)_{n o t}+\vec{w} \times \vec{v}
$$

But $\vec{v}=\vec{v}^{\prime}+\vec{w} \times \vec{r}^{\prime}:$

$$
\left(\frac{d \vec{v}}{d t}\right)_{\text {fixed }}=\left(\frac{d}{d t}\right)_{n o t}\left(\vec{v}^{\prime}+\vec{w} \times \vec{r}^{\prime}\right)+\vec{w} \times\left(\vec{v}^{\prime}+\vec{w} \times \vec{r}^{\prime}\right)
$$

$$
\vec{a}_{\text {fixed }}=\vec{a}^{\prime}+\left(\frac{d \vec{w}}{d t}\right)_{n o t} \times \vec{r}^{\prime}+\vec{w} \times \vec{w}^{\prime}+\vec{w} \times \vec{v}^{\prime}+\vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)
$$

Note that $(d \vec{w} / d t)_{\text {not }}=(d \vec{w} / d t)_{\text {fixed }}$ since $\vec{w} \times \vec{w}=0$. It follows that

$$
\vec{a}_{\text {fixed }}=\vec{a}^{\prime}+\dot{\vec{w}} \times \vec{r}^{\prime}+2 \vec{w} \times \vec{v}^{\prime}+\vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)+\vec{A}_{\sigma}
$$

- $\dot{\vec{w}} \times \vec{r}^{\prime}$ is the "transverse acceleration"
- $2 \vec{w} \times \vec{v}$ ' is the "coriolis acceleration"
- $\vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)$ is the "centripetal acceleration"
- \vec{A}_{σ} is the "translational acceleration" if σ us accelerating with respect to σ^{\prime} (origins do not match)

Note that

$$
\vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)=\left(\vec{w} \cdot \vec{r}^{\prime}\right) \vec{w}-(\vec{w} \cdot \vec{w}) \vec{r}^{\prime} \equiv w^{2}\left[\vec{r}^{\prime}-\left(\vec{w} \cdot \vec{r}^{\prime}\right) \hat{w}\right]
$$

We call this the "curve of rotation."

Figure 5.2.5 Illustrating the centripetal acceleration.

