Lecture 13: Dynamics of a Particle in a Rotating Coordinate System

$$
\vec{F}=m \vec{a} \quad \Longrightarrow \quad \vec{F}^{\prime}=m \vec{a}^{\prime}
$$
$$
\vec{F}^{\prime}=\vec{F}_{\text {physical }}-m \vec{A}_{0}-2 m \vec{w} \times \vec{v}^{\prime}-m \vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)-m \dot{\vec{w}} \times \vec{r}^{\prime}=m \vec{a}^{\prime}
$$

- \vec{A}_{0} is the acceleration of the origin σ^{\prime} with respect to σ.
- $-2 m \vec{w} \times \vec{v}^{\prime}$ is the coriolis force
- $-m \vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)$ is the centrifugal force
- $-m \dot{\vec{w}} \times \vec{r}^{\prime}$ is the transverse force

The coliolis force, centrifugal force, and traverse force make up the internal forces.
Inertial forces for a point moving outward in a merry go round:

Rotation of Hurricanes

North Hemisphere: Clockwise

South Hemisphere: Anticlockwise

Example 1: A rolling wheel

Figure 5.2.6 Rotating coordinates fixed to a rolling wheel.

Acceleration of point P with respect to the ground? Assume the wheel has a radius b.

$$
\vec{w}=w \hat{k}^{\prime}=\frac{v_{0}}{b} \hat{k}^{\prime} \quad, \quad\left\{\begin{array}{l}
\vec{r}^{\prime}=b \hat{i}^{\prime} \\
\vec{a}^{\prime}=0 \quad, \quad \vec{v}^{\prime}=0
\end{array}\right.
$$

All terms vanish except centripetal!

Transverse Rule:

$$
\vec{a}=\vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)=w^{2} b \hat{k}^{\prime} \times\left(\hat{k}^{\prime} \times \hat{i}^{\prime}\right)=-w^{2} b \hat{i}^{\prime}=\frac{v_{0}^{2}}{b}\left(-\hat{i}^{\prime}\right)
$$

Example 2: Bicycle with constant speed of radius ρ. Acceleration of the highest point on one of the wheels with respect to the ground?

Figure 5.2.7 Wheel rolling on a curved track. The z^{\prime}-axis remains vertical as the wheel turns.

We choose a coordinate system with \hat{k}^{\prime} always pointing up and \hat{i}^{\prime} always along the inner radius of the track. (Note the wheel is rotating with respect to this system).

This system rotates with $\vec{w}=\left(v_{0} / \rho\right) \hat{k}$.
$\left\{\begin{array}{l}\sigma^{\prime} \text { does not coincide with } \sigma! \\ \text { Origin } \sigma^{\prime} \text { is accelerated: } \vec{A}_{\sigma}=\frac{v_{0}^{2}}{\rho} \hat{i}^{\prime}\end{array}\right.$

The acceleration of any point of the wheel viewed by the σ^{\prime} system is v_{0}^{2} / b directed at the origin σ^{\prime};

Therefore the top of the wheel: $\vec{a}_{p}{ }^{\prime}=-\left(v_{0}^{2} / b\right) \hat{k}^{\prime}$
Also, the velocity of this point is $\vec{v}_{p}{ }^{\prime}=-v_{0} \hat{j}^{\prime}$.
So the coriolis acceleration is

$$
2 \vec{w} \times \vec{v}^{\prime}=2\left(\frac{v_{0}^{2}}{\rho}\right) \hat{k}^{\prime} \times\left(-\hat{j}^{\prime}\right)=\left(\frac{2 v_{0}^{2}}{\rho}\right) \hat{i}^{\prime}
$$

Note: $\dot{\vec{w}}=0$ and $\vec{w} \| \vec{r}^{\prime}$, so transverse and centripetal are zero! Therefore, the net acceleration relative to the ground of the top of the wheel

$$
\vec{a}_{p}=\overrightarrow{a_{p}^{\prime}}+2 \vec{w} \times \vec{v}^{\prime}+\overrightarrow{A_{\sigma}}=\frac{3 v_{0}^{2}}{\rho} \hat{i}^{\prime}-\frac{v_{0}^{2}}{b} \hat{k}^{\prime}
$$

Example 3: Bead on a rod; bead starts at a fixed point with initial velocity $\vec{v}_{0}{ }^{\prime}=w l \hat{i}$. When does it escape the rod?

> Figure 5.3.3 Bead sliding along a smooth rod rotating at constant angular velocity ω about an axis fixed at one end.

We solve in the rotating reference frame:

$$
\Sigma F^{\prime}=N \hat{j}^{\prime}-2 m \vec{w} \times \vec{v}^{\prime}-m \vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)=m \ddot{\vec{r}}^{\prime}
$$

Note that $\vec{w}=w \hat{k}^{\prime}$ and $\vec{v}^{\prime}=\dot{x}^{\prime} \hat{i}^{\prime}$ and $\vec{r}^{\prime}=x^{\prime} \hat{i}^{\prime}$ and $\ddot{\vec{r}}^{\prime}=\ddot{x}^{\prime} \hat{i}^{\prime}$

$$
\begin{gathered}
N \hat{j}^{\prime}-2 m w \dot{x}^{\prime} \hat{j}^{\prime}-m w^{2} x^{\prime}\left(-\hat{i}^{\prime}\right)=m \ddot{x}^{\prime} \hat{i}^{\prime} \\
\Longrightarrow\left\{\begin{array}{l}
N=2 m w \dot{x}^{\prime}, \quad(\text { Coriolis cancels normal force! }) \\
m w^{2} x^{\prime}=m \ddot{x}{ }^{\prime}, \quad \text { (Centrifugal force pulls particle to the outside!) } \\
\ddot{x}^{\prime}=w^{2} x^{\prime}
\end{array}\right. \\
x^{\prime}(t)=A e^{w t}+B e^{-w t} \\
\dot{x}^{\prime}(t)=w\left(A e^{w t}-B e^{-w t}\right)
\end{gathered}
$$

$$
\begin{gathered}
x^{\prime}(t=0)=0 \Longrightarrow A+B=0 \Longrightarrow A=-B \\
\dot{x}^{\prime}(t=0)=v_{0}^{\prime} \Longrightarrow w(A-B)=v_{0}^{\prime} \Longrightarrow w(2 A)=v_{0}^{\prime} \Longrightarrow A=\frac{v_{0}^{\prime}}{2 w}, B=-\frac{v_{0}^{\prime}}{2 w} \\
\\
\Longrightarrow x^{\prime}(t)=\frac{v_{0}^{\prime}}{2 w}\left(e^{w t}-e^{-w t}\right)=\frac{v_{0}^{\prime}}{w} \sinh (w t)
\end{gathered}
$$

Time to escape rod:

$$
\begin{gathered}
x^{\prime}(t=T)=l=\frac{v_{0}^{\prime}}{w} \sinh (w T) \\
\Longrightarrow \quad T=\frac{1}{w} \sinh ^{-1}\left(\frac{w l}{v_{0}^{\prime}}\right)=\frac{1}{w} \sinh ^{-1}(1)=\frac{0.88}{w}
\end{gathered}
$$

