Lecture 14: Motion of a Projectile on the Surface of the Earth

Figure 5.4.3 Coordinate axes for analyzing projectile motion.

$$
m \ddot{\vec{r}}^{\prime}=\vec{F}+m \vec{g}_{0}-m \vec{A}_{0}-2 m \vec{w} \times \dot{\vec{r}}^{\prime}-m \vec{w} \times\left(\vec{w} \times \vec{r}^{\prime}\right)
$$

The last term is the addition centrifugal force for $\vec{r}^{\prime} \neq 0$ and is very small.

$-m \vec{A}_{0}$ is a centrifugal force where $\left|\vec{A}_{0}\right|=w^{2} r_{e} \cos \lambda$. We redefine $\vec{g}=\left(\overrightarrow{g_{0}}-\vec{A}_{0}\right) \equiv-g \hat{k}^{\prime}$. That's what we mean by vertical.

In addition, we drop the terms that are $O\left(w^{2}\right)$ in comparison to $O(w)$ terms. Since $w_{\text {earth }}=$ $2 \pi /(24 \times 3600 \mathrm{~s})=7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}$, we have the following great approximation:

$$
m \ddot{\vec{r}}^{\prime}=-m g \hat{k}^{\prime}-2 m \vec{w} \times \dot{\vec{r}}^{\prime}
$$

Since $\vec{w}=w\left[(\cos \lambda) \hat{j}^{\prime}+(\sin \lambda) \hat{k}^{\prime}\right], \quad$ it follows that

$$
\begin{aligned}
\vec{w} \times \dot{\vec{r}}^{\prime} & =\left|\begin{array}{ccc}
\hat{i}^{\prime} & \hat{j}^{\prime} & \hat{k}^{\prime} \\
0 & w \cos (\lambda) & w \sin (\lambda) \\
\dot{x}^{\prime} & \dot{y}^{\prime} & \dot{z}^{\prime}
\end{array}\right| \\
& =\hat{i}^{\prime}\left[w \cos (\lambda)-w \sin (\lambda) \dot{y}^{\prime}\right]+\hat{j}^{\prime}\left[w \sin (\lambda) \dot{x}^{\prime}\right]+\hat{k}^{\prime}\left[-w \cos (\lambda) \dot{x}^{\prime}\right]
\end{aligned}
$$

We thus have that:

$$
\left\{\begin{array}{l}
\ddot{x}^{\prime}=-2 w\left[\dot{z}^{\prime} \cos (\lambda)-\sin (\lambda) \dot{y}^{\prime}\right] \\
\ddot{y}^{\prime}=-2 w \sin (\lambda) \dot{x}^{\prime} \\
\ddot{z}^{\prime}=2 w \cos (\lambda) \dot{x}^{\prime}-g
\end{array}\right.
$$

$$
\text { Integrate: }\left\{\begin{array}{l}
\dot{x}^{\prime}-\dot{x}_{0}^{\prime}=-2 w\left[\left(z^{\prime}-z_{0}^{\prime}\right) \cos (\lambda)-\sin (\lambda)\left(y^{\prime}-y_{0}^{\prime}\right)\right] \\
\dot{y}^{\prime}-\dot{y}_{0}^{\prime}=-2 w \sin (\lambda)\left(x^{\prime}-x_{0}^{\prime}\right) \\
\dot{z}^{\prime}-\dot{z}_{0}^{\prime}=2 w \cos (\lambda)\left(x^{\prime}-x_{0}^{\prime}\right)^{\prime}-g t
\end{array}\right.
$$

$$
\Longrightarrow \quad \ddot{x}^{\prime}=-2 w\left[\cos (\lambda)\left(\dot{z}_{0}^{\prime}+2 w \cos (\lambda)\left(x^{\prime}-x_{0}^{\prime}\right)-g t\right)-\sin (\lambda)\left(\dot{y}_{0}^{\prime}-2 w \sin (\lambda)\left(x^{\prime}-x_{0}^{\prime}\right)\right)\right]
$$

Now removing the $O\left(w^{2}\right)$ terms...

$$
\Longrightarrow \quad \ddot{x}^{\prime}=-2 w\left[\cos (\lambda) \dot{z}_{0}^{\prime}-\sin (\lambda) \dot{y}_{0}^{\prime}-g \cos (\lambda) t\right]
$$

We integrate again:

$$
\dot{x}-\dot{x}_{0}=-2 w\left[\cos (\lambda) \dot{z}_{0}-\sin (\lambda) \dot{y}_{0}^{\prime}\right] t+2 w g \cos (\lambda) \cdot \frac{t^{2}}{2}
$$

We integrate yet again:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x_{0}^{\prime}+\dot{x}_{0}^{\prime} t-w t^{2}\left[\cos (\lambda) \dot{z}_{0}^{\prime}-\sin (\lambda) \dot{y}_{0}^{\prime}\right]+\frac{1}{3} w g t^{3} \cos (\lambda) \\
y^{\prime}(t)=y_{0}^{\prime}+\dot{y}_{0}^{\prime} t-w \dot{x}_{0}^{\prime} t^{2} \sin (\lambda) \\
z^{\prime}(t)=z_{0}^{\prime}+\dot{z}_{0}^{\prime} t-\frac{1}{2} g t^{2}+w \dot{x}_{0}^{\prime} t^{2} \cos (\lambda)
\end{array}\right.
$$

Example 1: A falling Body
A body is dropped a height h above the ground. At $t=0, \vec{v}^{\prime}=0$ and $\vec{r}^{\prime}=h \hat{k}$.
The equations become

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\frac{1}{3} w g t^{3} \cos (\lambda) \\
y^{\prime}(t)=0 \\
z^{\prime}(t)=-\frac{1}{2} g t^{2}+h
\end{array}\right.
$$

As it falls, it drifts to the east. It hits the ground at $T=\sqrt{2 h / g}$

$$
\Longrightarrow \quad x^{\prime}(T)=\frac{1}{3} w g\left(\frac{2 h}{g}\right)^{3 / 2} \cos (\lambda)=\frac{1}{3} w \sqrt{\frac{8 h^{3}}{g}} \cos (\lambda)
$$

Plugging in $h=100 \mathrm{~m}, \lambda=95^{\circ}$ and $w=7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}$ yields $x^{\prime}(T)=1.55 \mathrm{~cm}$.

Example 2: Deflection of a rifle bullet

$$
\Longrightarrow \quad y^{\prime}(t)=-w v_{0}^{\prime} t^{2} \sin (\lambda)
$$

The projectile goes south (north hemisphere $\lambda>0$) or north (south hemisphere $\lambda<0$). Let R be the range of the projectile. Then

$$
R \approx v_{0} t_{f l i g h t} \quad \Longrightarrow \quad|\Delta| \approx w v_{0}^{\prime} \frac{R^{2}}{v_{0}^{2}} \sin (\lambda)=\frac{w R^{2}}{v_{0}}|\sin (\lambda)|
$$

This is the same for all directions, provided the projectiles \vec{v}_{0} is in the xy plane (parallel to the ground). This can be shown by examining the Coriolis force:

$$
\vec{w} \times \vec{v}=\hat{i}^{\prime}\left(-w \dot{y}^{\prime} \sin \lambda\right)+\hat{j}^{\prime}\left(w \dot{x}^{\prime} \sin \lambda\right)+\hat{k}\left(-w \dot{x}^{\prime} \cos \lambda\right)
$$

Note that the \hat{i}^{\prime} and \hat{j}^{\prime} components of the force have the same magnitude.

