
PHYS 321A Lecture Notes 15 University of Victoria

Lecture 15: Gravitation and Central Forces

Newton’s law of universal gravitation for point particles is

~Fij = G
mimj

r2ij
· ~rij
rij

What about the force between a uniform sphere of mass and a point particle?

Newton was bothered by this question, not sure whether or not his law would hold when the
distance between objects was less than their radius. He invented integrals to deal with this
problem (what a badass).

Consider a thin spherical shell:
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∆Mring = σ · 2π(R sin θ)(R∆θ)

where σ is the area density of the mass. By symmetry, only the component of ΣP∆~FQ along
OP survives:

∆F = Gm
∆Mring

s2
cos(φ)

=⇒ dF = Gm · 2πσR2 · sin θ cosφ

s2
dθ

It follows that

F = Gm(2πσR2

∫ π

0

dθ
sin θ cosφ

s2

To evaluate the integral, let’s express the integrand as a function of s.

Triangle OPQ, law of cosines for θ: s2 + R2 − 2rR cos θ = s2. Taking d/dθ of both sides
yields:

2rR sin θ = 2r
dr

dθ
=⇒ sin θdθ =

sds

Rr

Law of cosines for φ:

s2 + r2 − 2rs cosφ = R2 =⇒ cosφ =
s2 + r2 −R2

2rs

=⇒ Fshell = Gm(2πσR2)

∫ r+R

r−R

s2 + r2 +R2

2rs

sds

Rr

1

s2
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Fshell =
GmMshell

4r2R

∫ r+R

r−R
ds

[
1 +

r2 −R2

s2

]

Fshell =
GmMshell

4r2R

(
2R− (r2 −R2)

[
1

s

]r+R
r−R

)

Fshell =
GmMshell

4r2R
· 4R =⇒ Fshell =

GmMshell

r2

Kepler’s Laws of Planetary Motion

Kepler’s laws are empirical laws, deduced from detailed analysis of planetary motion. They
can be derived from Newton’s laws and gravity.

(i): Law of Ellipses: The orbit of each planet is an ellipse, with the sun located at one of
its foci.

(ii): Law of Equal Areas: A line drawn between the sun and the planet sweeps out equal
areas in equal times as the planet orbits the sun.

(iii): Harmonic Law: The square of the sidereal period of a planet (time it takes to orbit
the sun relative to the stars) is directly proportional to the cube of the semi major axis of
the planet’s orbit.

The second law is identical to angular momentum, and requires only ~F = f(r)êr (or
V = V (r) a central force)
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Angular momentum is defined as ~L = ~r × ~p

d~L

dt
=

d~r

dt
× ~p + ~r × d~p

dt
= ~r × ~F = ~τ

If ~F = L(r)êr then

d~L

dt
= 0 =⇒

{
~r · ~L = 0

~v · ~L = 0

Both ~r and ~v are perpendicular to a constant vector =⇒ particle moves in a plane ⊥ to
the field vector ~L.

=⇒ problem of a central field can be reduced to 2D always!

~r = rêr , êr = (cos(θ)̂i+ sin(θ)ĵ)

~̇r = ~v = ṙêr + r( ˙̂er) = ṙêr + r(− sin(θ)̂i+ cos(θ)ĵ) θ̂ = ṙêr + rθ̇êθ

Note that − sin(θ)̂i+ cos(θ)ĵ = êθ.

Angular Momentum and Areal Velocity
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~v = êrṙ + êθrθ̇

|~L| = |~r ×m~v| = m|rêr × (ṙêr + rθ̇êθ)| = mr2θ̇|êr × êθ|

Note that êr × êθ = −k̂ so we have that

L = mr2θ̇ = constant

Calculating the Areal Velocity:

dA =
1

2
|~r × d~r| =

1

2
|rêr × (drêr + rdθêθ)| =

1

2
r2dθ

Note: Any increment of motion along êr does not add to or subtract from the arc dS, nor L

Path for area to be swept:

dA

dt
=

1

2
r2θ̇ =

L

2m
= constant

=⇒ A(t0 + T )− A(t0) =
L

2m
T

Another Way:

dA =
1

2
|~r × d~r| =⇒ dA

dt
=

1

2
|~r × d~r/dt| = 1

2m
|~r × ~p| = L

2m
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Example: Which f(r) has all circular orbits with identical areal velocity Ȧ?

~̈r =
d

dt
(ṙêr + rθ̇êθ) = r̈êr + ṙ( ˙̂er) + ṙθ̇e2θ + rθ̈êθ + rθ̇( ˙̂eθ)

= (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ

In this case

ar = (r̈ − rθ̂2) = − rθ̇2 = ac

Now

f(r) = −mrθ̇2

So we use

Ȧ =
1

2
r2θ̇ =⇒ f(r) = −4m

r3
Ȧ2 =⇒ f(r) ∝ 1

r3

Note that Ȧ for a 1/r2 force does depend on radius r! For a circular orbit:

−GmM
r2

= −mrθ̇2 =⇒ θ̇2 =
GM

r3
=⇒ Ȧ =

1

2
r2
√
GM

r3
=

√
GM

2

√
r

We find that Ȧ is larger when r is larger.
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