
PHYS 321A Lecture Notes 16 University of Victoria

Lecture 16: Kepler’s First Law: The Law of Ellipses

Central Force: ~F (r) = f(r)êr

{
êr = (cos θ, sin θ)

êθ = (− sin θ, cos θ)

Finding the equations of motion for r and θ:

m¨̂r = m
d

dt

d

dt
(rêr) = m

d

dt
(ṙêr + r ˙̂er) = m(r̈êr + ṙ ˙̂er + ṙ ˙̂er + r¨̂er)

We also have that

˙̂er = (− sin θ, cos θ)θ̇ = θ̇êθ

¨̂er = θ̈θ̂ + θ̇
˙̂
θ = θ̈êθ + θ̇(− cos θ,− sin θ)θ̇

¨̂er = θ̈êθ − θ̇2êr

So hence

m~̈r = m
[
(r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ

]
= f(r)êr

=⇒

{
m(r̈ − rθ̇2) = f(r))

m(2ṙθ̇ + rθ̈) = 0
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The second equation implies that

1

r

d

dt
(r2θ̇) = 0 =⇒ r2θ̇ = const = l =

L

m
= |~r × ~v|

The quantity |~r × ~v| is the angular momentum per unit mass. It follows that

θ̇ =
l

r2

Lets try to get rid of time and find an equation that relates r to θ. To achieve this, consider
the convenient change of variable u = 1/r.

r =
1

u
=⇒ ṙ = − 1

u2
u̇ = − 1

u2
dθ

dt

du

dθ
= − 1

u2
θ̇
du

dθ
= −l du

dθ

r̈ = −lθ̇ d
2u

dθ2
= − l2u2d

2u

dθ2

Plugging these into the equations of motion:

r̈ − rθ̇2 =
f(r)

m
=⇒ − l2u2d

2u

dθ2
− θ̇2

u
=

f(1/u)

m

=⇒ − l2u2d
2u

dθ2
− u3l2 =

f(1/u)

m

d2u

dθ2
+ u = − f(1/u)

ml2u2

This is very convenient for the orbit! It allows us to find u = u(θ) (or r = r(θ)). Also, given
r = r(θ) we can find the force field f(r).

Example: A particle in a central field moves in the spiral orbit r = cθ2.
(a) Determine f(r). (b) Find how θ depends on t
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(a):

=⇒ u = c−1θ−2 =⇒ −f(1/u)

ml2u2
=

d2u

dθ2
+ u = 6c−1θ−4 + u

=⇒ −f(1/u)

ml2u2
= 6cu2 + u =

6c

r2
+

1

r

=⇒ f(r) = −ml2
[

6c

r4
+

1

r3

]
(b):

θ̇ = lu2 = lc−2θ−4

θ4dθ = lc−2dt =⇒ θ5

5
= lc−2t

=⇒ θ =

[
5l

c2
t

]1/5
∝ t1/5

Inverse Square Law

Consider f(r) = −k/r2 (k = GmM). We assume M >> m for now but later we will
generalize.

=⇒ d2u

dθ2
+ u =

−r2f(r)

ml2
= − r2

ml2

(
− k
r2

)
=

k

ml2

d2u

dθ2
+ u =

k

ml2

Just like the harmonic oscillator subject to a constant force, the solution is
u(θ) = A cos(θ − θ0) + k/ml2

=⇒ r =
1

k
ml2

+ A cos θ

(Set θ0 = 0; assume θ is measured from distance of closest approach). This is an ellipse! To
see this, write

r =
ml2/k

1 + Aml2

k
cos θ

Page 3



PHYS 321A Lecture Notes 16 University of Victoria

Geometrical Definition of Ellipse: Locus of all points whose sum of distances from two
foci is constant:

r + r′ = const = (1− a)a+ (1 + a)a = 2a

Let’s show that this property implies r(θ) like above

Pythagoras: r′2 = (r sin θ)2 + (2εa+ r cos θ)2

Use r′ = 2a− r:

(2a− r)2 = r2 sin2 θ + 4ε2a2 + r2 cos2 θ + 4εar cos θ

4a2 − 4ar + r2 = r2 + 4ε2a2 + 4εar cos θ

a− r = ε2a+ εr cos θ
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(1− ε2)a = r(1 + ε cos θ) =⇒ r =
(1− ε2)a
1 + ε cos θ

r = α at θ = π/2, so

r =
α

1 + ε cos θ
=⇒

{
α = ml2

k

ε = ml2

k
A

Note:

r0 = r(θ = 0) =
α

1 + ε

r1 = r(θ = π) =
α

1− ε

Actually, the equation r = 1/(1 + ε cos θ) does not describe any ellipse! The orbit can be:

1. ε = 0 circle

2. 0 < ε < 1 ellipse

3. ε = 1 parabola

4. ε > 1 hyperbola

These are conic sections:
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