PHYS 321A Lecture Notes 17 University of Victoria

Lecture 17: Kepler’s Third Law
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Example 1: Calculate the speed of a satellite in circular orbit about Earth.
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For a low lying orbit, r. & Rp — v, = +/gRg ~ 7920 m/s ~ 8 km/s.

Example 2: A spacecraft is at a low lying orbit at the earth with radius r. &~ Rg. The
most energy efficient way to send this spacecraft to the moon is to boost its speed when
it’s in circular orbit so that its orbit becomes an ellipse with perigee at r. and apogee at
Roon = 60Rg. What is the required speed boost at perigee? On the diagram below,
ro = Rg and r1 = R00n-

Apogee Perigee

Figure 6.5.3 Spacecraft
changing from a circular to an
elliptical orbit.
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At circular orbit,
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The new orbit must have new «,, and ¢,, such that
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We also know that «,, =

%ln2 = 2 (v,r)?. Hence we equate:
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This is a 40% boost to a speed of 1.4 x 8 km/s = |11.2km/s
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Kepler’s Third Law:

7'20((13

where 7 is the period of orbit and a is distance from the sun. This was regarded as the
universal relationship between period and distance: “the magic of the heavens.”

Let’s start from the second law:

/Adtle — A:lT e T:%
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2mwab
But A=7mab = 7= ma

We now take a brief break and show that b = av/1 — €2 and o = a(1 — ¢2). Note that on the
diagram below, r + 1’ = 2a:

(8]

By the Pythagorean theorem we have that b? + €2a? = a? or equivalently that b = av/1 — €2.
To show that o = a(1 — €2), we first note that ' + o« = 2a = 1’ = 2a — . Again, by the
Pythagorean theorem,

r? = (2a0)" +0? = (20—0)’ = (2c)?+0’
= a=a(l—¢)
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Now back to the problem at hand:

2ma(a(l — €2)1/?) 2ra?
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This is the same for all planets since the mass of the sun M is constant! If distances are
measured in astronomical units 1AU= @eqrep = 1.50 x 108 km and periods expressed in earth
years then 72 = a® = (47?/GM)=1

Period Semimajor Cube Eccentricity
Square Axis

Planet T(yr) T (yr?) a(AU) a’(AU%) €

Mercury 0.241 0.0581 0.387 0.0580 0.206
Venus 0.615 0.378 0.723 0.378 0.007
Earth 1.000 1.000 1.000 1.000 0.017
Mars 1.881 3.538 1.524 3.540 0.093
Jupiter 11.86 140.7 5.203 140.8 0.048
Saturn 29.46 867.9 9.539 868.0 0.056
Uranus 84.01 7058. 19.18 7056. 0.047
Neptune 164.8 27160. 30.06 27160. 0.009
Pluto 247.7 61360, 39.440 61350. 0.249

An eccentricity near 0 implies a nearly circular orbit.
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Dark Matter

What is the rotational speed of stars in a galaxy? Consider the simple galaxy model where
the galaxy has uniform mass density p = M/ %ﬂ'RBI
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Hence the rotational speed for stars with » < R is o< ! For stars in the spiral arms of the
galaxy, i.e r > R:

Measured

Keplerian

Rotational Speed (km/s)
S
=
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Radius (kpc)
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This suggests additional “dark matter” spread throughout the galaxy. Dark matter seems
to make up approximately 75% of the universe (i.e., we only see 25% of matter required to
account for gravitational motion.
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