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Lecture 17: Kepler’s Third Law

r(θ) =
α

1 + ε cos θ

{
α = ml2/k

ε = ml2

k
A

Example 1: Calculate the speed of a satellite in circular orbit about Earth.

ε = 0 (A = 0)

k = GMEms

l = |~r × ~v| = rcvc

Now from r(θ) = rc:

rc =

ms(rcvc)2

GMEms

1
=

r2cv
2
c

GME

=⇒ v2c =
GME

rc
=

(
GME

R2
E

)
R2
E

rc
=
gR2

E

rc

vc =

(
gR2

E

rc

)1/2

For a low lying orbit, rc ≈ RE =⇒ vc =
√
gRE ≈ 7920 m/s ≈ 8 km/s.

Example 2: A spacecraft is at a low lying orbit at the earth with radius rc ≈ RE. The
most energy efficient way to send this spacecraft to the moon is to boost its speed when
it’s in circular orbit so that its orbit becomes an ellipse with perigee at rc and apogee at
Rmoon ≈ 60RE. What is the required speed boost at perigee? On the diagram below,
r0 = RE and r1 = Rmoon.
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At circular orbit,

rc =
ml2

k
=
m(vcrc)

2

k
=⇒ rc =

k

mv2c

The new orbit must have new αn and εn such that

rn(θ) =
αn

1 + εn cos θ
=⇒

{
rn(θ = 0) = αn

1+εn
= rc (perigee)

rn(θ = π) = αn

1−εn = Rmoon (apogee)

Find αn :

{
αn = rc(1 + εn)
rc

Rmoon
αn = rc(1− εn)

=⇒
(

1 +
rc

Rmoon

)
αn = 2rc =⇒ αn =

2rc
1 + rc/Rmoon

We also know that αn = m
k
ln

2 = m
k

(vnrc)
2. Hence we equate:

m

k
(vnrc)

2 =
2rc

1 + rc/Rmoon

m

k
v2nrc =

2

1 + rc/Rmoon

m

k
v2n

(
k

mv2c

)
=

2

1 + rc/Rmoon

=⇒
(
vn
vc

)2

=
2

1 + rc/Rmoon

=
2Rmoon

Rmoon + rc

(
vn
vc

)
=

√
2× 60RE

61RE

= 1.40

This is a 40% boost to a speed of 1.4× 8 km/s = 11.2km/s
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Kepler’s Third Law:

τ 2 ∝ a3

where τ is the period of orbit and a is distance from the sun. This was regarded as the
universal relationship between period and distance: “the magic of the heavens.”

Let’s start from the second law:

Ȧ =
L

2m
=
l

2∫ τ

0

Ȧdt =
l

2
τ =⇒ A =

l

2
τ =⇒ τ =

2A

l

But A = πab =⇒ τ =
2πab

l

We now take a brief break and show that b = a
√

1− ε2 and α = a(1− ε2). Note that on the
diagram below, r + r′ = 2a:

By the Pythagorean theorem we have that b2 + ε2a2 = a2 or equivalently that b = a
√

1− ε2.
To show that α = a(1− ε2), we first note that r′ + α = 2a =⇒ r′ = 2a− α. Again, by the
Pythagorean theorem,

r′2 = (2εa)2 + α2 =⇒ (2a− α)2 = (2εa)2 + α2

=⇒ α = a(1− ε2)
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Now back to the problem at hand:

τ =
2πa(a(1− ε2)1/2)

l
=

2πa2

l

√
1− ε2

=⇒ τ 2 =
4π2a4

l2
(1− ε2)

τ 2 =
4π2a4

l2
α

a
= 4π2

(α
l2

)
a3

We insert α = ml2/k and k = GmM to get:

τ 2 = 4π2

(
ml2

GmMl2

)
a3

τ 2 =

(
4π2

GM

)
a3

This is the same for all planets since the mass of the sun M is constant! If distances are
measured in astronomical units 1AU= aearth = 1.50×108 km and periods expressed in earth
years then τ 2 = a3 =⇒ (4π2/GM) = 1

An eccentricity near 0 implies a nearly circular orbit.
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Dark Matter

What is the rotational speed of stars in a galaxy? Consider the simple galaxy model where
the galaxy has uniform mass density ρ = M/4

3
πR3:

GMm

r2
=
mv2

r
=⇒ v =

GM

r
=
G

r
ρ

4

3
πr3

=⇒ v2 =
4

3
πG

Mgal

(4/3)πR3
r2 =

GMgal

R3
r2

=⇒ v =

√
GMgal

R3
r ∝ r

Hence the rotational speed for stars with r < R is ∝ r! For stars in the spiral arms of the
galaxy, i.e r > R:

GMgalm

r2
=
mv2

r
=⇒ v =

√
GMgal

r
∝ 1√

r
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This suggests additional “dark matter” spread throughout the galaxy. Dark matter seems
to make up approximately 75% of the universe (i.e., we only see 25% of matter required to
account for gravitational motion.
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