Lecture 18: Potential Energy in a Gravitational Field

Are all central forces conservative? A central force is given by $\vec{F}=f(r) \hat{e}_{r}$.

$$
\nabla \times \vec{F}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\hat{e}_{r} & \hat{e}_{\theta} r & \hat{e}_{\phi} r \sin \theta \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
F_{r} & r F_{\theta} & r F_{\phi} \sin \theta
\end{array}\right|
$$

Since the force is central, $F_{\theta}, F_{\phi}=0$ and hence

$$
\nabla \times \vec{F}=\frac{1}{r^{2} \sin \theta}\left[r \hat{e}_{\theta} \frac{\partial}{\partial \phi} f(r)-r \sin \theta \hat{e}_{\phi} \frac{\partial}{\partial \theta} f(r)\right]=0
$$

So yes, all central forces are conservative.

$$
\begin{gathered}
\Longrightarrow \quad \vec{F}=-\vec{\nabla} V(r) \quad, \quad f(r)=-\frac{d V}{d r} \\
V(r)=-\int_{\vec{r}_{i}}^{\vec{r}} \vec{F} \cdot d \vec{r}=-\int_{r_{i}}^{r} f(r) d r
\end{gathered}
$$

Since $f(r)=-k / r^{2}$ we have that

$$
V(r)=k \int_{r_{i}}^{r} \frac{d r}{r^{2}}=k\left(-\frac{1}{r}\right)_{r_{i}}^{r}=-k\left(\frac{1}{r}-\frac{1}{r_{i}}\right)
$$

We choose $r_{i}=\infty$ so that we can define the gravitational potential energy as

$$
V(r)=-\frac{G M m}{r}
$$

In addition, we define the gravitational potential Φ as

$$
\Phi(\vec{r})=\lim _{m \rightarrow 0}\left[\frac{V(r)}{m}\right]=-\frac{G M}{r}
$$

If we have a number of particles of mass $m_{1}, m_{2}, \ldots, m_{i}, \ldots$ located at $\vec{r}_{1}, \vec{r}_{2}, \ldots$ then the gravitational potential is

$$
\Phi(\vec{r})=\sum_{i} \Phi_{i}=-G \sum_{i} \frac{m_{i}}{\left|\vec{r}-\overrightarrow{r_{i}}\right|}
$$

Because Φ is a scalar, it is generally easier to computer Φ as opposed to $\vec{F}=\sum_{i} \vec{F}_{i}$.
If the gravitational force is denoted by $\vec{F}=m \vec{g}$ we have

$$
\vec{F}=-\vec{\nabla} V \quad \vec{g}=-\vec{\nabla} \Phi
$$

\vec{g} is the "local field intensity", or the acceleration of gravity.

Integrate: Spherical Shell

$$
\begin{gathered}
\Phi(r)=-\frac{G M}{r} \quad \text { for } r>R \\
\Phi(r)=-\frac{G M}{R} \quad \text { constant for } r<R
\end{gathered}
$$

Integrate: Mass Ring

$$
\begin{aligned}
& \Phi(r)=-\frac{G M}{r}\left(1+\frac{R^{2}}{4 r^{2}}+\ldots\right) \quad r>R \quad\left(\approx-\frac{G M}{r} \text { for } r \gg R\right) \\
& \Phi(r)=-\frac{G M}{r}\left(1+\frac{r^{2}}{4 R^{2}}+\ldots\right) \quad r<R
\end{aligned}
$$

For $r<R$ this means that

$$
\vec{g}=-\frac{\partial \Phi}{\partial r} \hat{e}_{r}=\frac{G M}{R} \frac{r}{2 R^{2}} \hat{e}_{r}=\frac{G M}{2 R^{3}} r \hat{e}_{r} \quad \text { Repulsive! }
$$

Energy Equation of an Orbit

$$
\begin{aligned}
& \dot{\vec{r}}=\dot{r} \hat{e}_{r}+r \dot{\hat{e}_{r}}=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta} \\
& v^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}
\end{aligned}
$$

and since $(1 / 2) m v^{2}+V(r)=E=$ constant, it follows that

$$
\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+V(r)=E
$$

and now

$$
u=\frac{1}{r} \quad, \quad \frac{d u}{d \theta}=-\frac{1}{r^{2}} \frac{d r}{d \theta}=-\frac{1}{r^{2}} \frac{d r}{d t} \frac{d t}{d \theta} \quad \Longrightarrow \quad-r^{2} \dot{\theta} \frac{d u}{d \theta}=\dot{r}
$$

and since $-r^{2} \dot{\theta}=l$ we have that

$$
\begin{gathered}
\dot{r}=-l \frac{d u}{d \theta} \\
l^{2}=r^{4} \dot{\theta}^{2} \Longrightarrow u^{2} l^{2}=r^{2} \dot{\theta}^{2} \\
\frac{1}{2} m l^{2}\left[\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right]+V\left(\frac{1}{u}\right)=E
\end{gathered}
$$

Inverse Square Field: Find the orbit parameters as a function of E.

$$
\begin{gathered}
V(r)=-\frac{k}{r}=-k u \\
\Longrightarrow \frac{1}{2} m l^{2}\left[\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right]-k u=E \\
\left(\frac{d u}{d \theta}\right)^{2}=\left(\frac{2 E}{m l^{2}}\right)+\left(\frac{2 k}{m l^{2}}\right) u-u^{2} \Longrightarrow \frac{d u}{\sqrt{-u^{2}+\left(\frac{2 k}{m l^{2}}\right) u+\left(\frac{2 E}{m l^{2}}\right)}}=d \theta
\end{gathered}
$$

Define $a=-1$ and $b=2 k / m l^{2}$ and $c=2 E / m l^{2}$.

$$
\begin{gathered}
\int \frac{d u}{\sqrt{a u^{2}+b+c}}=\int_{\theta_{0}}^{\theta} d \theta \quad, \quad \text { use a table of integrals: } \\
\Longrightarrow \quad\left(\theta-\theta_{0}\right)=\frac{1}{\sqrt{-a}} \cos ^{-1}\left(-\frac{b+2 a u}{\sqrt{b^{2}-4 a c}}\right) \\
\Longrightarrow \quad \cos \left[\sqrt{-a}\left(\theta-\theta_{0}\right)\right]=-\frac{b+2 a u}{\sqrt{b^{2}-4 a c}} \\
\Longrightarrow \quad u=\frac{\sqrt{b^{2}-4 a c}}{-2 a} \cos \left[\sqrt{-a}\left(\theta-\theta_{0}\right)\right]+\frac{b}{-2 a}
\end{gathered}
$$

and now substituting in our values,

$$
\begin{gathered}
\Longrightarrow \frac{1}{r}=\frac{\sqrt{4\left(\frac{k}{m l^{2}}\right)^{2}+\left(\frac{8 E}{m l^{2}}\right)}}{2} \cos \left(\theta-\theta_{0}\right)+\frac{k}{m l^{2}} \\
\Longrightarrow \frac{1}{r}=\frac{k}{m l^{2}}\left[\sqrt{1+\frac{2 m l^{2}}{k^{2}} E} \cos \left(\theta-\theta_{0}\right)+1\right] \\
\Longrightarrow r=\frac{m l^{2} / k}{1+\sqrt{1+\frac{2 m l^{2}}{k^{2}}} \cos \left(\theta-\theta_{0}\right)}
\end{gathered}
$$

Relationship Between Eccentricity and Energy

Recall that

$$
\begin{aligned}
& \epsilon=\sqrt{1+\frac{2 m l^{2}}{k^{2}} E} \\
& E<0 \Longrightarrow \epsilon<1 \quad \text { Elliptic } \\
& E=0 \quad \Longrightarrow \quad \epsilon=1 \quad \text { Parabola } \\
& E>0 \quad \Longrightarrow \quad \epsilon>1 \quad \text { Hyperbola }
\end{aligned}
$$

We know that $m l^{2} / k=\alpha=\left(1-\epsilon^{2}\right) a$ and so

$$
\begin{gathered}
\epsilon^{2}=1+\frac{2 E}{k}\left(1-\epsilon^{2}\right) a \\
\Longrightarrow \quad 0=\left(1-\epsilon^{2}\right)+\frac{2 E a}{k}\left(1-\epsilon^{2}\right) \quad \Longrightarrow \quad \frac{2 E a}{k}=-1 \\
\Longrightarrow E=-\frac{k}{2 a}
\end{gathered}
$$

This gives energy as a function of the semi-major axis.

