PHYS 321A Lecture Notes 18 University of Victoria

Lecture 18: Potential Energy in a Gravitational Field

Are all central forces conservative? A central force is given by F = f(r)é,.
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Since the force is central, Iy, Fj, = 0 and hence
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So yes, all central forces are conservative.
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Since f(r) = —k/r? we have that
"dr 1\" 1 1
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We choose r; = 0o so that we can define the gravitational potential energy as
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In addition, we define the gravitational potential ® as

O(7) = lim [V(T)] —

m—0 m
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If we have a number of particles of mass my, ms, ..., m;, ... located at 77,75, ... then the grav-
itational potential is

- m;
() = gﬁgz _GZ:W—M

Because @ is a scalar, it is generally easier to computer ® as opposed to F = > E.

If the gravitational force is denoted by F = mg we have

F=_VV G=-Vo

g is the “local field intensity”, or the acceleration of gravity.

Integrate: Spherical Shell

M
O(r) = _GM forr > R
r
M
O(r) = —% constant for r < R
Integrate: Mass Ring
M 2 M
@(r):——G 1+—R + ... r>R %——G forr >> R
r 4r? r
GM r?
O(r) = — . (1+4R2+ ) r<R

For r < R this means that
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Energy Equation of an Orbit
P =1, +ré, = 6, + 10¢

v? =%+

and since (1/2)mv? + V(r) = E =constant, it follows that

%m@%w%ﬁ+vm:E

and now

du 1dr 1 drdt 9 ,
= |—rf—=r
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and since —r26 = [ we have that

1 o | (du)\® Iy

Inverse Square Field: Find the orbit parameters as a function of E.
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Define a = —1 and b = 2k/ml* and ¢ = 2E/mi?>.

/ du B /Gde
vauz+b+e B o 7

_— (0 — 0 ) — 1 COS_l <_M)
0 v/ —a Vb2 — 4dac
b+ 2au
- —a(0 — 6 = - —
cos [v/—a( 0)] i
b2 — 4ac b
— u = ——ZCL CcOS [\/ —CL(Q — 90)] + —_ZCL

and now substituting in our values,

k
0—0 —
cos( o) + 7

1 AR ()
ro 2

k 2ml?
= =5 1+ 12 Ecos(0 — 6) + 1
mi?/k
e r =

1+4/14 27,?;2 cos(f — b6)

use a table of integrals:
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Relationship Between Eccentricity and Energy
Recall that

2ml?

€ = 1+

EFE<0 = e<1 Ellptic
EFE=0 = =1 Parabola
E>0 = e€>1 Hyperbola

We know that ml?/k = a = (1 — €*)a and so

2F
& = 1+"=(1—-ea
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2F 2F
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k k
k
— |E=-=
2a

This gives energy as a function of the semi-major axis.
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