Lecture 19: Energy, Orbits, Radial Motion

Example: Placing a satellite into a geosynchronous orbit with two velocity boosts.

The satellite starts at low earth orbit (LEO) $\left(v \approx 26000 \mathrm{~km} / \mathrm{h}, \quad R_{L E O} \approx R_{\text {earth }}\right)$. The first boost takes the satellite to an intermediate elliptical orbit:

$$
\text { Note: }\left\{\begin{array}{l}
R_{L E O}=a(1-\epsilon) \\
R_{G E O}=a(1+\epsilon)
\end{array}\right.
$$

where a is the semi major axis of the intermediate elliptical orbit. The energy of the elliptical orbit is given by

$$
E=-\frac{k}{2 a}=-\frac{G M_{E} m}{2 a}=\frac{1}{2} m v_{p}^{2}-\frac{G M_{e} m}{a(1-\epsilon)}
$$

the value after the last equality represents the energy at the perigee.

$$
\begin{gathered}
\Longrightarrow \quad \frac{1}{2} m v_{p}^{2}=\frac{G M_{e} m}{a}\left[\frac{1}{1-\epsilon}-\frac{1}{2}\right] \\
\Longrightarrow v_{p}^{2}=\frac{G M_{E}}{a}\left[\frac{2-(1-\epsilon)}{1-\epsilon}\right]=\frac{G M_{E}}{a}\left(\frac{1+\epsilon}{1-\epsilon}\right)
\end{gathered}
$$

Substituting in $R_{G E O}$ and $R_{L E O}$ yields

$$
v_{p}^{2}=\frac{2 G M_{E}}{R_{L E O}+R_{G E O}}\left(\frac{R_{G E O}}{R_{L E O}}\right)
$$

This is the velocity at the perigee. The LEO velocity is given by

$$
\frac{m v_{L E O}^{2}}{R_{L E O}}=\frac{G M_{E} m}{R_{L E O}^{2}} \Longrightarrow v_{L E O}^{2}=\frac{G M_{E}}{R_{L E O}}
$$

First Boost:

$$
\Delta v_{1}=v_{p}-v_{L E O}=\sqrt{\frac{G M_{E}}{R_{L E O}}}\left[\sqrt{\frac{2 R_{G E O}}{R_{G E O}+R_{L E O}}}-1\right]
$$

To solve for $R_{G E O}$, we use the fact that $v_{G E O}=2 \pi R_{G E O} / T_{E}$ and $m v_{G E O}^{2} / R_{G E O}=G m M_{E} / R_{G E O}^{2}$.

$$
\Longrightarrow \quad R_{G E O}=\frac{G M_{E}}{v_{G E O}^{2}}=\frac{G M_{E}}{4 \pi^{2} R_{G E O}^{2} / T_{E}^{2}} \quad \Longrightarrow \quad R_{G E O}^{3}=\frac{G M_{E} T_{E}^{2}}{4 \pi^{2}}
$$

Hence $R_{G E O}=42400 \mathrm{~km}$. Note that $M_{E}=5.97 \times 10^{24} \mathrm{~kg}, R_{L E O}=6693 \mathrm{~km}, R_{G E O}=$ 42400 km and hence it follows that $\Delta v_{1}=8600 \mathrm{~km} / \mathrm{h}$.

Second Boost :

The energy at the apogee of the elliptical orbit is given by

$$
\begin{gathered}
E=-\frac{G M_{E} m}{2 a}=\frac{1}{2} m v_{a}^{2}-\frac{G M_{E} m}{a(1+\epsilon)} \\
\Longrightarrow v_{a}^{2}=\frac{G M_{E}}{a}\left[\frac{2}{1+\epsilon}-1\right]=\frac{2 G M_{E}}{\left(R_{L E O}+R_{G E O}\right)}\left[\frac{1-\epsilon}{1+\epsilon}\right] \\
v_{a}^{2}=\frac{2 G M_{E}}{\left(R_{L E O}+R_{G E O}\right)}\left(\frac{R_{L E O}}{R_{G E O}}\right)
\end{gathered}
$$

$v_{G E O}$ is given by

$$
\frac{m v_{G E O}^{2}}{R_{G E O}}=\frac{G M_{E} m}{R_{G E O}^{2}} \Longrightarrow \quad v_{G E O}^{2}=\frac{G M_{E}}{R_{G E O}}
$$

Hence

$$
\Delta v_{2}=v_{G E O}-v_{a}=\sqrt{\frac{G M_{E}}{R_{G E O}}}\left[1-\sqrt{\frac{2 R_{L E O}}{R_{L E O}+R_{G E O}}}\right] \approx 5269 \mathrm{~km} / \mathrm{h}
$$

We see that $\Delta v_{1}+\Delta v_{2}=13869 \mathrm{~km} / \mathrm{h}$, which is much less than $v_{L E O} \approx 26000 \mathrm{~km} / \mathrm{h}$. (About 50% off).

Effective Potential in Radial Motion

$$
\begin{aligned}
& \left\{\begin{array}{l}
1 / 2 m v^{2}+V(r)=E \\
v^{2}=\dot{r}^{2}+(r \dot{\theta})^{2} \\
l=|\vec{r} \times \vec{v}|=r r \dot{\theta}=r^{2} \dot{\theta} \\
\frac{1}{2} m \dot{r}^{2}+\left[\frac{m l^{2}}{2 r^{2}}+V(r)\right]=E
\end{array} \quad \Longrightarrow \quad \frac{1}{2} m\left[\dot{r}^{2}+\frac{l^{2}}{r^{2}}\right]+V(r)=E\right.
\end{aligned}
$$

We call the term in the square brackets the effective potential $(U(r))$ or the "centrifugal potential."

Example: Suppose $V(r)=-k / r$. Then $U(r)=\left(m l^{2} / 2\right)\left(1 / r^{2}\right)-(k / r)$.

If $E<0$, bounded $\mathrm{r} \Longrightarrow$ Ellipse! Turning points at $\dot{r}=0$ or

$$
\begin{aligned}
U(r)=E(<0) & \Longrightarrow \frac{m l^{2}}{2} \frac{1}{r^{2}}-\frac{k}{r}=E \quad \Longrightarrow \quad E r^{2}+k r-\frac{m l^{2}}{2}=0 \\
\Longrightarrow r_{ \pm}=\frac{1}{2 E} & \left(-K \pm \sqrt{K^{2}+\frac{4 E m l^{2}}{2}}\right)=\frac{K \pm \sqrt{K^{2}+2 E m l^{2}}}{-2 E} \\
& \Longrightarrow \quad r_{ \pm}=\frac{K \pm \sqrt{K^{2}-2|E| m l^{2}}}{2|E|}
\end{aligned}
$$

(+ is the apogee and - is the perigee)
If we make the argument under the square root zero, the orbit is a circle. Now we have

$$
E=E_{\min }=-\frac{K^{2}}{2 m l^{2}} \quad \Longrightarrow \quad r_{0}=\frac{K}{2\left|E_{\min }\right|}=\frac{m l^{2}}{K}
$$

Now using $l=r_{0} v_{0}$ we have

$$
r_{0}=\frac{m}{K} r_{0}^{2} v_{0}^{2} \quad \Longrightarrow \quad \frac{K}{r_{0}^{2}}=\frac{m v_{0}^{2}}{r_{0}}
$$

Rotate effective U and find orbits:
(b)

