Lecture 20: Motion in an Inverse Square Repulsive Potential

$$
f(r)=\frac{Q q}{r^{2}} \quad(k=-Q q)
$$

$$
\begin{aligned}
\frac{d^{2} u}{d \theta^{2}}+u & =-\frac{f(r)}{m u^{2} l^{2}}=-\frac{Q q}{m l^{2}} \\
\Longrightarrow \quad u^{-1}=r(\theta) & =\frac{1}{A \cos \left(\theta-\theta_{0}\right)-Q q / m l^{2}} \quad, \quad \text { or }
\end{aligned}
$$

$$
r(\theta)=\frac{m l^{2} Q^{-1} q^{-1}}{-1+\sqrt{1+\frac{2 E m l^{2}}{Q^{2} q^{2}}} \cos \left(\theta-\theta_{0}\right)}
$$

Since $E=+\frac{1}{2} m v_{0}^{2}$, the orbit is a hyperbola

We call b the impact parameter. We choose θ_{0} such that $r(\theta=0)=\infty$

$$
\Longrightarrow \quad \cos \left(\theta_{0}\right)=\frac{1}{\sqrt{1+\frac{2 E m l^{2}}{q^{2} Q^{2}}}}
$$

In addition, $r\left(\theta=\theta_{0}\right)=r_{\text {min }}$ and $r\left(\theta=2 \theta_{0}\right)=\infty$.
Since

$$
\sin \left(\theta_{0}\right)=\sqrt{1-\frac{1}{1+\frac{2 E m l^{2}}{q^{2} Q^{2}}}}=\frac{\sqrt{\frac{2 E m l^{2}}{q^{2} Q^{2}}}}{\sqrt{1+\frac{2 E m l^{2}}{q^{2} Q^{2}}}}
$$

we have that

$$
\tan \left(\theta_{0}\right)=\sqrt{2 m E} \frac{l}{Q q}=\tan \left(\frac{\pi}{2}-\frac{\theta_{s}}{2}\right)=\cot \left(\frac{\theta_{s}}{2}\right)
$$

Recall that $l=|\vec{r} \times \vec{v}|=b v_{0}$

$$
\Longrightarrow \quad \cot \left(\frac{\theta_{s}}{2}\right)=\sqrt{2 m \frac{1}{2} m v_{0}^{2}} \frac{b v_{0}}{Q q}=\frac{m v_{0}^{2} b}{Q q}=\frac{2 b E}{q Q}
$$

Differential Scattering Cross Section

$$
d N=I \sigma\left(\theta_{s}\right) d \Omega
$$

$d N$: \# of scattered particles into $d \Omega$ in unit time
I : \# of incident particles per unit area per unit time (flux)
σ : cross section area of each scattering center
Ω : scattered solid angle

$$
I(2 \pi b) d b=I \sigma\left(\theta_{s}\right) 2 \pi \sin \left(\theta_{s}\right) d \theta_{s} \quad \Longrightarrow \quad \sigma\left(\theta_{s}\right)=\frac{b}{\sin \theta_{s}}\left|\frac{d b}{d \theta_{s}}\right|
$$

$I(2 \pi b) d b$ corresponds to the $d N$ incident at $[b, b+d b]$ and $I \sigma\left(\theta_{s}\right) 2 \pi \sin \left(\theta_{s}\right) d \theta_{s}$ corresponds to the scattered.

$$
\begin{aligned}
b & =\frac{q Q}{2 E} \cot \left(\frac{\theta_{s}}{2}\right) \quad \Longrightarrow \quad \frac{d b}{d \theta_{s}}=\frac{q Q}{2 E} \frac{(-1)}{2 \sin ^{2}\left(\theta_{s} / 2\right)} \\
& \Longrightarrow \quad \sigma\left(\theta_{s}\right)=\left(\frac{b}{\sin \left(\theta_{s}\right)}\right)\left(\frac{q Q}{2 E}\right)\left(\frac{1}{\sin ^{2}\left(\theta_{s} / 2\right)}\right)
\end{aligned}
$$

Note that $\sin \left(\theta_{s}\right)=2 \sin \left(\theta_{s} / 2\right) \cos \left(\theta_{s} / 2\right)$. In addition, we know that $b=\left(Q q / m v_{0}^{2}\right) \cos \left(\theta_{s} / 2\right)$ and hence

$$
\begin{gathered}
\sigma\left(\theta_{s}\right)=\left(\frac{(Q q)^{2}}{(2 E)^{2}}\right)\left(\frac{\cos \left(\theta_{s} / 2\right)}{\sin \left(\theta_{s} / 2\right)}\right)\left(\frac{1}{2 \sin ^{2}\left(\theta_{s} / 2\right)}\right)\left(\frac{1}{2 \sin \left(\theta_{s} / 2\right) \cos \left(\theta_{s} / 2\right)}\right) \\
\Longrightarrow \quad \sigma\left(\theta_{s}\right)=\frac{(Q q)^{2}}{16 E^{2}} \cdot \frac{1}{\sin ^{4}\left(\theta_{s} / 2\right)}
\end{gathered}
$$

Rutherford scattering cross sections are very different from the Thomson jelly model.

Some particles are deflected by $\theta_{s}=\pi$.
PS: quantum mechanics gives identical results!

