
PHYS 321A Lecture Notes 21 University of Victoria

Lecture 21: Stability of Nearly Circular Orbits

1

2
mṙ2 +

[
ml2

2r2
+ V (r)

]
= E

Recall that the term in square brackets is U(r). Then

mr̈ = −dU
dr

=
ml2

r3
− dV

dr
=⇒ mr̈ =

ml2

r3
+ f(r)

For a circular orbit, ṙ = r̈ = 0 since r = a is constant. Plugging this in yields

f(a) = −ml
2

a3

We now expand r about a: x = r − a

=⇒ mẍ = ml2
1

(x+ a)3
+ f(x+ a)

mẍ =
ml2

a3

[
1

1 + x/a

]3
+ f(a) + f ′(a)x+ ...σ(x2)

mẍ =
ml2

a3

(
1− 3x

a

)
+ f(a) + f ′(a)x+ ...

Note that ml2/a3 = −f(a) and hence

mẍ =

[
f ′(a) +

3

a
f(a)

]
x+ ...

mẍ+

[
−3

a
f(a)− f ′(a)

]
x = 0

If the term in square brackets [·] is positive then the particle will oscillate about r = a and
the orbit is stable. If [·] is negative then r ∼ et and the radius will blow up.

Criteria for Stability: f(a) + (a/3)f ′(a) < 0
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Example: f(r) = −crm (c > 0)

=⇒ − cam +
a

3
(−cmam−1) = − cam

[
1 +

m

3

]
< 0

This is stable when

1 +
m

3
> 0 =⇒ m > −3

One may show that f(r) = −c/r3 is unstable.

Stable Circular Orbits:

f(r) = −cr (2d harmonic oscillator)

f(r) = −c/r2 (gravity, ...)
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Apsides and Apisodal Angles for Nearly Circular Orbits

Apisidal Angle: Polar angle between rmin and rmax. We give it the symbol ψ. This is a
very important quantity for characterizing effects of other planets (e.g. Jupiter) on a planet’s
orbit. Note that ψ = π for an ellipse.

When the orbit is stable, we showed that r will oscillate about r = a with period

τr = 2π

√
m

[− 3
a
f(a)− f ′(a)]

The apisidal angle ψ is then the value that θ changes from t = 0 to t = τr/2 (half a period).
Now since

θ̇ =
l

r2
≈ l

a2
=

√
−a3f(a)

m

a2
=

√
−a

3f(a)

ma4
=

√
−f(a)

ma

=⇒ dθ

dt
=

√
−f(a)

ma
=⇒

∫ ψ

0

dθ =

∫ τr/2

0

dt

√
−f(a)

ma

=⇒ ψ =
τr
2

√
−f(a)

ma
= π

√
f(a)

3f(a) + af ′(a)
= π

[
3 +

af ′(a)

f(a)

]−1/2

For example, when f(r) = −crn, we get

ψ = π

[
3 +

a(−cn)an−1

−can

]
=

π√
3 + n
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This is independent of the size of the orbit! For n = −2 (inverse square law), ψ = π as
expected. For f(r) = −cr (harmonic 2d), ψ = π/2 =⇒ 2π/ψ = 4 = integer and hence the
orbit is repetitive.

On the other hand, for n = 2, we find that ψ = π/
√

5 and hence the orbit never repeats itself.

If the law of forces departs slightly from the inverse square law (n = 2), then the apsides
either advances or regresses steadily, depending on whether τ & π or τ . π.

This is easy to measure! Consider the effect of other planets on planet Mercury. Mercury is
subject to a force

f(r) = − k
r2

+ εr (ε > 0)

The term εr is the repulsion due to a “uniform ring” of mass (other planets, mainly Jupiter).

ψ = π

[
3 +

a(−a2

k
)(2k
a3

+ ε)

(−a2

k
)(− k

a2
+ εa)

]−1/2
= π

[
3 +
−2− εa3

k

1− εa3

k

]−1/2

= π

[
1− 4εa3

k

1− εa3

k

]−1/2
= π

(
1− εa3

k

)1/2(
1− 4εa3

k

)−1/2

= π

(
1− 1

2

εa3

k
+ ...

)(
1 +

2εa3

k
+ ...

)
= π

(
1 +

3

2

εa3

k

)
> π

Hence the perihelion advances!

In 1877, people succeeded in calculating the effect of all known planets on one another’s
orbits. The apisodal angles were found to advance or regress depending on the planet. All
observations of the planets agreed nicely with the theory........except mercury.

The perihelion of mercury advances by 575′′ every century. (1′′ = 1◦/3600). The theory only
predicted 534′′.

So is planet Vulcan within Mercury’s orbit? Actually no! It’s due to the effects of general
relativity, as shown by Einstein. This was an important confirmation of general relativity.
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