Lecture 23: Dynamics of Systems of Particles Continued

Example: A long, thin rod of mass M and length L hangs from one of its ends. Calculate the total \vec{L} of the rod as a function of angular velocity ω.

(a)

(b)

(c)

From (a):

$$
L_{c m}=\left|\vec{R}_{c m} \times \vec{p}_{c m}\right|=\frac{L}{2} M \frac{L}{2} \omega=\frac{1}{4} M L^{2} \omega
$$

From (b):

$$
\begin{gathered}
d L_{r e l}=2 r v d m=2 r(r \omega)(\lambda d r)=2 r^{2} \omega \lambda d r \\
\Longrightarrow L_{r e l}=\int_{0}^{L / 2} 2 \omega \lambda r^{2} d r=2 \omega \lambda\left(L^{3} / 24\right)=\frac{1}{2} M L^{2} \omega=I_{c m} \omega
\end{gathered}
$$

It follows that

$$
L_{t o t}=L_{c m}+L_{r e l}=\left(\frac{1}{12}+\frac{1}{4}\right) M L^{2} \omega=\frac{1}{3} M L^{2} \omega
$$

We can also calculate $L_{t o t}$ directly from (c):

$$
\begin{gathered}
d L_{t o t}=r v d m=r(w r) \lambda d r \\
\Longrightarrow L_{t o t}=\int_{0}^{L} r^{2} d r=w \lambda L^{3} / 3=\frac{1}{3} M L^{2} \omega
\end{gathered}
$$

Similar Results for Kinetic Energy:

$$
\begin{aligned}
T & =\frac{1}{2} \sum_{i} m_{i} \vec{v}_{i}^{2}=\frac{1}{2} \sum_{i} m_{i}\left(\vec{v}_{c m}+\vec{v}_{i}^{\prime}\right) \cdot\left(\vec{v}_{c m}+\vec{v}_{i}^{\prime}\right) \\
& =\frac{1}{2}\left(\sum_{i} m_{i}\right) v_{c m}^{2}+2 \frac{1}{2} \vec{v}_{c m} \cdot \sum_{i} m_{i} \vec{v}_{i}^{\prime}+\frac{1}{2} \sum_{i} m_{i} \vec{v}_{i}^{2}
\end{aligned}
$$

Since $\sum_{i} m_{i} \vec{v}_{i}{ }^{\prime}=0$ if follows that

$$
\begin{aligned}
T & =\frac{1}{2} M v_{c m}^{2}+\sum_{i} \frac{1}{2} m_{i} \vec{v}_{i}^{2} \\
& =T_{c m}+T_{\text {relcm }}
\end{aligned}
$$

Example: Rod of length L

$$
\begin{aligned}
T_{c m} & =\frac{1}{2} M\left(\frac{L}{2} \omega\right)=\frac{1}{2}\left(\frac{M L^{2}}{4}\right) \omega^{2} \\
d T_{r e l} & =2 \frac{1}{2} d m v^{2}=d m r^{2} \omega^{2}=\lambda \omega^{2} r^{2} d r
\end{aligned}
$$

and hence

$$
T_{r e l}=\lambda \omega^{2} \int_{0}^{L / 2} r^{2} d r=\lambda \omega^{2} \frac{1}{3}\left(\frac{L}{2}\right)^{3}=\frac{1}{2} \lambda \omega^{3} \frac{L^{3}}{12}=\frac{1}{2}\left(\frac{M L^{2}}{12}\right) \omega^{2}
$$

so

$$
T_{t o t}=T_{c m}+T_{r e l}=\frac{1}{2}\left(\frac{M L^{2}}{3}\right) \omega^{2}
$$

Note that $M L^{2} / 3=I_{t o t}$. We can also find $T_{t o t}$ in the following way:

$$
\begin{gathered}
d T_{t o t}=\frac{1}{2} d m(r \omega)^{2}=\frac{1}{2} \lambda \omega^{2} r^{2} d r \\
\Longrightarrow \quad T_{t o t}=\frac{1}{2} \lambda \omega^{2} \frac{L^{3}}{3}=\frac{1}{2}\left(\frac{M L^{2}}{3}\right) \omega^{2}
\end{gathered}
$$

Motion of Two Interacting Bodies, Reduced Mass

We choose the origin as the CM:

$$
\begin{aligned}
& m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}=\overrightarrow{0} \\
& \Longrightarrow \quad \vec{r}_{2}=-\frac{m_{1}}{m_{2}} \vec{r}_{1}
\end{aligned}
$$

Describe system by relative coordinate $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$:

$$
\vec{r}=\vec{r}_{1}-\vec{r}_{2}=\vec{r}_{1}\left(1+\frac{m_{1}}{m_{2}}\right)
$$

Newton's Second Law for \vec{r}_{1} :

$$
\begin{gathered}
m \ddot{\vec{r}_{1}}=\vec{F}_{12}=f(r) \frac{\vec{r}}{r} \\
\Longrightarrow \frac{m_{1} \ddot{\vec{r}}}{\left(1+\frac{m_{1}}{m_{2}}\right)}=f(r) \hat{e}_{r} \quad \Longrightarrow \quad\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)=f(r) \hat{e}_{r}
\end{gathered}
$$

We call $m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ the reduced mass. The relative motion of both particles occurs about the $\mathrm{cm}\left(\vec{R}_{c m}=\overrightarrow{0}\right.$ always $)$ and the relative displacement moves with a reduced mass

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

For example, if the bodies have equal mass then $\mu=m / 2$.

Example: Find the velocity required for two objects of mass m to move in a circle of radius R about their cm when they attract according to gravity.

Other method:

$$
\begin{gathered}
\mu \ddot{\vec{r}}=\frac{G m^{2}}{r^{2}} \quad \rightarrow \quad \text { since } \ddot{\vec{r}}=\ddot{\overrightarrow{r_{1}}}-\ddot{\overrightarrow{r_{2}}}=\left[a_{c}-\left(-a_{c}\right)\right] \hat{e}_{r}=2 a_{c} \hat{e}_{r} \\
\Longrightarrow \quad\left(\frac{m}{2}\right)\left(2 a_{c}\right)=\frac{G m^{2}}{(2 R)^{2}} \quad \text { (same as above) }
\end{gathered}
$$

Connection to Kepler's Third Law

In 6.6 we showed that

$$
\tau^{2}=4 \pi^{2} a^{3} \frac{m}{k}
$$

if the sun remains stationary. The starting point was the equation

$$
m \ddot{\overrightarrow{r_{1}}}=-\frac{k}{r_{1}^{2}} \quad, \quad k=G m M_{\odot}
$$

In actuality, the sun does not remain stationary; it moves, but the coordinate $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$ the following equation

$$
\mu \ddot{\vec{r}}=-\frac{k}{r^{2}} \Longrightarrow\left|\frac{m M_{\odot}}{m+M_{\odot}}\right|=-\frac{g m M_{\odot}}{r^{2}} \quad \Longrightarrow \quad m \ddot{\vec{r}}=-\frac{G m\left(m+M_{\odot}\right)}{r^{2}}
$$

Kepler's third law becomes

$$
\begin{aligned}
& \tau^{2}=a^{3} 4 \pi^{2} \frac{m}{G m\left(m+M_{\odot}\right)} \\
& \tau^{2}=a^{3}\left(\frac{4 \pi^{2}}{G\left(m+M_{\odot}\right)}\right)
\end{aligned}
$$

Now the coefficient depends on m and is no longer universal! The dependence, however, is very weak. Take Jupiter for example

$$
\frac{\text { coeff corrected }}{\text { coeff without correction }}=\frac{\frac{4 \pi^{2}}{G\left(m+M_{\odot}\right)}}{\frac{4 \pi^{2}}{G M_{\odot}}}=\frac{M_{\odot}}{m+M_{\odot}} \approx 1-\frac{m}{M_{\odot}}=1-10^{-3}=0.999
$$

This corresponds to a 0.1% correction at most!

