Lecture 24

Binary Stars and Black Holes

Half of the stars in the galaxy in the region near the sun are binary or double.

Example: Sirius, brightest star in the sky

$$
\begin{aligned}
& M_{1}=2.1 M_{\odot} \\
& M_{2}=1.05 M_{\odot} \quad(\text { white dwarf }) \\
\Longrightarrow & a=20 \mathrm{~A} . \mathrm{U} .
\end{aligned}
$$

Period?

$$
\tau=a^{3 / 2} \frac{1}{\left(m_{1}+m_{2}\right)^{1 / 2}}=\frac{(20)^{3 / 2}}{\left.(3.15)^{1 / 2}\right)} \text { years }=50.4 \text { years }
$$

Another interesting binary system is Cygnus $\mathrm{x}-1$. It is the strangest X-Ray source seen from earth and is formed by a normal star (HDE 226868) and a strange companion. Consider the optical spectroscopic observations:

$$
\left\{\begin{array}{l}
\tau=5.6 \text { days }=1.53 \times 10^{-2} \text { years } \\
a=30 \times 10^{6} \mathrm{~km}=0.2 \text { A.U }
\end{array}\right.
$$

Star $\rightarrow m_{1}=25.5 M_{\odot}$. What is m_{2} ?

$$
\begin{gathered}
\left(m_{1}+m_{2}\right)=\frac{a^{3}}{\tau^{2}}=\frac{0.2^{3}}{\left(1.53 \times 10^{-2}\right)^{2}}=34.2 \\
\Longrightarrow \quad m_{2}=34.2-25.5=8.7 M_{\odot}
\end{gathered}
$$

It turns out the Cygnus $\mathrm{x}-1$ is the strangest x -ray source seen from earth. What is the source of the x -rays?

The radius of m_{2} is only 26 km ! Thats about the distance from campus to the airport! A key astronomical finding is that the radius of the companion is too small to be a normal star. It is believed that this is a black hole.

\rightarrow Subject to a funny bet between Stephen Hawking and Kip Thorne. (Kip Thorne won a subscription to Penthouse Magazine).

The Restricted Three Body Problem

Restrictions:
(i): $\left\{\begin{array}{l}m \ll M_{1} \\ m \ll M_{2}\end{array} \quad\right.$ (m is called the "tertiary")
(ii) All orbits lie in the same plane, and each of the orbits of the two primaries can be approximated by a circle.

We will assume that the motion of M_{1}, M_{2} is unaffected by m. However, m orbits around M_{1}, M_{2} and M_{1}, M_{2} orbit about the center of mass with frequency ω. Hence we use the rotating coordinate system shown above.

Coordinates of m: $\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{gathered}
r_{1}^{\prime}=\left|\vec{r}^{\prime}-\vec{a}\right|=\sqrt{\left(x^{\prime}-a\right)^{2}+y^{\prime 2}} \quad, \quad \vec{a}=a \hat{x}^{\prime} \\
r_{2}^{\prime}=\left|\vec{r}^{\prime}-\vec{b}\right|=\sqrt{\left(x^{\prime}+b\right)^{2}+y^{\prime 2}} \quad, \quad \vec{b}=-b \hat{x}^{\prime} \\
\vec{F}=-m \frac{G M_{1}}{r_{1}^{\prime 2}} \frac{\vec{r}_{1}^{\prime}}{r_{1}^{\prime}}-m \frac{G M_{2}}{r_{2}^{\prime 2}} \frac{\vec{r}_{2}^{\prime}}{r_{2}^{\prime}}
\end{gathered}
$$

We write the equations of motion for the rotating reference frame:

$$
\vec{F}^{\prime}=m \vec{a}^{\prime}=\vec{F}-2 m \vec{\omega} \times \vec{v}^{\prime}-m \vec{\omega} \times\left(\vec{\omega} \times \vec{r}^{\prime}\right)
$$

where

$$
2 \vec{\omega} \times \vec{v}=2 \omega \hat{k}^{\prime} \times\left(\dot{x}^{\prime} \hat{i}^{\prime}+\dot{y}^{\prime} \hat{j}^{\prime}\right)=2 \omega\left(\dot{x}^{\prime} \hat{j}-\dot{y}^{\prime} \hat{i}^{\prime}\right)
$$

and

$$
\begin{aligned}
\vec{\omega} \times\left(\vec{\omega} \times \vec{r}^{\prime}\right) & =\omega^{2} \hat{k}^{\prime} \times\left[\hat{k}^{\prime} \times\left(x^{\prime} \hat{i}^{\prime}+y^{\prime} \hat{j}^{\prime}\right)\right]=\omega^{2} \hat{k}^{\prime} \times\left[x^{\prime} \hat{j}^{\prime}-y^{\prime} \hat{i}^{\prime}\right] \\
& =\omega^{2}\left(-x^{\prime} \hat{i}^{\prime}-y^{\prime} \hat{j}^{\prime}\right)=-\omega^{2}\left(x^{\prime} \hat{i}^{\prime}+y^{\prime} \hat{j}^{\prime}\right)
\end{aligned}
$$

The equation of motion becomes

$$
\begin{gathered}
\ddot{\vec{r}}^{\prime}=-\frac{G M_{1}}{r_{1}^{\prime 3}} \vec{r}_{1}^{\prime}-\frac{G M_{2}}{r_{2}^{\prime 3}} \vec{r}_{2}^{\prime}-2 \omega \dot{x}^{\prime} \hat{j}^{\prime}+2 \omega \dot{y}^{\prime} \hat{i}^{\prime}+\omega^{2}\left(x^{\prime} \hat{i}^{\prime}+y^{\prime} \hat{j}^{\prime}\right) \\
\left\{\begin{array}{l}
\ddot{x}^{\prime}=-G M_{1} \frac{\left(x^{\prime}-a\right)}{\left[\left(x^{\prime}-a\right)^{2}+y^{\prime 2}\right]^{3 / 2}}-G M_{2} \frac{\left(x^{\prime}+b\right)}{\left[\left(x^{\prime}+b\right)^{2}+y^{\prime 2}\right]^{3 / 2}}+\omega^{2} x^{\prime}+2 \omega \dot{y}^{\prime} \\
\ddot{y}^{\prime}=-G M_{1} \frac{y^{\prime}}{\left[\left(x^{\prime}-a\right)^{2}+y^{\prime 2}\right]^{3 / 2}}-G M_{2} \frac{y^{\prime}}{\left[\left(x^{\prime}+b\right)^{2}+y^{\prime 2}\right]^{3 / 2}}+\omega^{2} y^{\prime}-2 \omega \dot{x}^{\prime}
\end{array}\right.
\end{gathered}
$$

Effective Potential and the Five Lagrangian Points

The first three terms in the RHS can be written as a potential. LEt $\vec{a}=a \hat{x}$ 'and $\vec{b}=-b \hat{x}^{\prime}$.

$$
\begin{gathered}
V\left(\vec{r}^{\prime}\right)=-\frac{G m M_{1}}{\left|\vec{r}^{\prime}-\vec{a}\right|}-\frac{G m M_{2}}{\left|\vec{r}^{\prime}-\vec{b}\right|}-\frac{1}{2} m \omega^{2} r^{\prime 2}, \text { so that } \\
m \ddot{\vec{r}}=-\vec{\nabla} V\left(\vec{r}^{\prime}\right)-2 m \vec{\omega} \times \vec{v}^{\prime}
\end{gathered}
$$

The first two terms of $V\left(\vec{r}^{\prime}\right)$ are the gravitational terms and the final term is the centrifugal term. Let's think about the term $-\vec{\nabla} V\left(\vec{r}^{\prime}\right)$.

For convenience, let's choose units such that:

Set $\left\{\begin{array}{l}a+b=1 \text { length unit } \\ G\left(m_{1}+m_{2}\right)=1 \text { mass unit } \\ \tau \quad, \quad \text { orbital period of the primaries }=2 \pi \text { time units } \quad \text { (or } \omega=1 \text { inverse time unit) } \\ \text { Measure energy in units of } G\left(m_{1}+m_{2}\right) /(a+b)\end{array}\right.$

We characterize the equations of motion by a single parameter:

$$
\begin{gathered}
\alpha=\frac{M_{1}}{\left(M_{1}+M_{2}\right)} \in[0,1 / 2] \quad\left(M_{2} \leq M_{1}\right) \\
\Longrightarrow \text { since } x_{c m}=\frac{M_{1} a}{M_{1}+M_{2}}-\frac{M_{2} b}{M_{1}+M_{2}}=0 \quad \Longrightarrow \quad \frac{a}{b}=\frac{M_{2}}{M_{1}}
\end{gathered}
$$

It follows that

$$
\frac{a}{a+b}=\frac{a / b}{1+a / b}=\frac{M_{2} / M_{1}}{1+M_{2} / M_{1}}=\frac{M_{2}}{M_{1}+M_{2}}=\alpha \quad\left(\text { and } \frac{b}{a+b}=1-\alpha\right)
$$

and hence

$$
\begin{aligned}
& \frac{V\left(x^{\prime}, y^{\prime}\right)}{G\left(M_{1}+M_{2}\right) /(a+b)} \\
= & \frac{M_{1}}{M_{1}+M_{2}}\left(\frac{1}{\sqrt{\left(\frac{x^{\prime}}{a+b}-\frac{a}{a+b}\right)^{2}+\left(\frac{y^{\prime}}{a+b}\right)^{2}}}\right)-\frac{M_{2}}{M_{1}+M_{2}}\left(\frac{1}{\sqrt{\left(\frac{x^{\prime}}{a+b}+\frac{b}{a+b}\right)^{2}+\left(\frac{y^{\prime}}{a+b}\right)^{2}}}\right) \\
& -\frac{1}{2} \frac{\omega^{2}(a+b)^{2}}{G\left(M_{1}+M_{2}\right) /(a+b)}\left(\frac{r^{\prime}}{a+b}\right)
\end{aligned}
$$

We measure x^{\prime}, y^{\prime} in units of $(a+b), V$ in units of...

$$
V\left(x^{\prime}, y^{\prime}\right)=-\frac{(1-\alpha)}{\sqrt{\left(x^{\prime}-a\right)^{2}+y^{\prime 2}}}-\frac{\alpha}{\sqrt{\left(x^{\prime}+1-\alpha\right)^{2}}}-\frac{x^{\prime 2}+y^{\prime 2}}{2}
$$

(i) Show plot in Mathematica when $\alpha=1 / 2 . V \rightarrow-\infty$ at each primary location. m may orbit each primary and will get dragged along by it just as the moon orbits the earth. Argue that there are some equilibrium points where $\vec{\nabla}=\overrightarrow{0}$. Stable or unstable?
(ii) Show contour plot. Show that there are 5 Lagrangian points where $\vec{\nabla} V=0$.
$\Longrightarrow \quad 3$ saddle points along $x^{\prime} \quad\left(L_{1}-L_{3}\right)$
$\Longrightarrow \quad 2$ unstable (max) points along $y^{\prime} \quad\left(L_{4}-L_{5}\right)$
(iii) Is it possible for a tertiary to remain locked at any of these five points, synchronously locked to the two primaries as they rotate about the center of mass?

This can't happen for $L_{1}-L_{3}$ (along x') $\quad \Longrightarrow \quad$ Saddle points! Any perturbation destabilizes the tertiary.

However, V is rather flat around L_{4} and L_{5}. But V is a local maximum, can it be stable? If the object rotates clockwise, the Coriolis force stabilizes the orbit!

(iv) Describe case $M_{1} \gg M_{2}$, e.g. Sun and Jupiter.
(v) L_{4} and L_{5} are now forming equilateral triangles.

Show distribution of asteroids in the solar system!

