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Lecture 26: The Principle of Least Action (Hamilton’s

Principle)

Where does ~F = m~a or −~∇V = m~̈r come from? Is there a more fundamental reason as to
why these equations hold?

Define the Lagrangian function as

L = T − V

For example, in a conservative system in 1D we would have

L(y, ẏ) =
1

2
mẏ2 − V (y)

Suppose that a particle starts at y1 = y(t1) and ends its trajectory at y2 = y(t2). The path
taken is a particular (y(t), ẏ(t)) trajectory; the action of this trajectory is given by

J =

∫ t2

t1

Ldt

Hamilton’s principle states that out of all the infinite family of motions (y(t), ẏ(t)), the ac-
tual motion that takes place is the one for which the action is an extrema:

δJ = δ

∫ t2

t1

Ldt = 0

i.e., any variation on top of this motion (y(t) + n(t), ẏ + ṅ) with endpoints fixed (n(t1) =
n(t2) = 0) vanishes in 1st order. The usual situation is that J has a global minimum at the
actual trajectory.

Functional Derivative:

J = J [y(t)] ,
δJ

δy
= 0
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Example: Particle in Free Fall

L =
1

2
mẏ2 −mgy

δJ = δ

∫ t2

t1

Ldt = δ

∫ t2

t1

[m
2
ẏ2 −mgy

]
dt

=

∫ t2

t1

[m
2

2ẏδy −mgδy
]
dt

Note that δẏ = d
dt

(δy). We integrate the first term by parts
∫
udv = uv−

∫
vdu. Let u = mẏ

and d
dt

(δy) = dv. Then we have∫ t2

t1

mẏ
d

dt
(δy)dt = mẏ(δy)

∣∣t2
t1
−
∫

(δy)
d

dt
(mẏ)dt

Note that mẏ(δy)
∣∣t2
t1

= 0 since δy(ti) = 0. Hence

∫ t2

t1

mẏ
d

dt
(δy)dt = −

∫
(δy)

d

dt
(mẏ)dt = −

∫
mÿ(δy)dt

=⇒ δJ = −
∫ t2

t1

[mÿ +mg](δy)dt

This = 0 for any arbitrary (δy) if and only if

mÿ = −mg Newton’s 2nd law!
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We proved that δJ = 0 for the actual trajectory. Is J a minimum or a maximum?

Actual trajectory: y(t) = −1

2
gt2 (y(t = 0) = 0, y(t = t2) = −1

2
gt2

2)

Assume y(α, t) = y(0, t) + αn(t) where y(0, t) is the actual solution, α is a bookkeeping
constant, and n(t) is some arbitrary function.

J(α) =

∫ t2

t1

dtL[y(α, t), ẏ(α, t)]


ẏ(α, t) = ẏ(0, t) + αṅ(t) = (−gt+ αṅ)

T = 1
2
mẏ2 = 1

2
m[−gt+ αṅ]2

V = mgy = mg
[
−1

2
gt2 + αn

]

J(α) =

∫ t2

t1

dt

(
1

2
m
[
g2t2 − 2gtαṅ+ α2ṅ2

]
−mg[−1

2
gt2 + αn]

)

=

∫ t2

t1

dt

(
mg2t2 −mgα(tṅ+ n) +

1

2
mα2ṅ2

)

=

∫ t2

t1

dt

(
mg2t2 −mgα(−n+ n) +

1

2
mα2ṅ2

)

=
mg2

3
(t2

3 − t13) +
1

2
mα2

∫ t2

t1

dtṅ2 = J0 + J1α
2
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Hence J(α = 0) is a local minimum in the space of all functions n(t)!

∂J(α)

∂α

∣∣∣
α=0

= 0

Generalized Coordinates

Consider a pendulum in the xy plane. How many degrees of freedom does it have?

(x, y, z) are inter-related. The two constraints are z = 0 and r2 − (x2 + y2) = 0.

=⇒ only one independent degree of freedom. We can choose x, but that’s awkward.
It’s even double valued (we can have the same x with a different configuration).

The natural choice is θ: here we only need a single number to determine the location of the
pendulum.
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Generalized Coordinates are any collection of independent variables (q1, q2, ..., qn) (not
connected by any equation of constraint) that just suffice to specify uniquely the configu-
ration of a system of particles. The number n of open coordinates is equal to the system’s
degree of freedom.

For example, if we use:

(i) Smaller # than n coordinates: System’s motion is indeterminate
(ii) Larger # than n coordinates: Some coordinates are completely given by others

Another Example: Consider two particles connected by a rigid rod.

{
6 coordinates : (x1, y1, z1) , (x2, y2, z2)

One constraint : d2 − [(x1 − x2)2 + (y2 − y1)2 + (z2 − z1)2] = 0

=⇒ 5 degrees of freedom. Natural choice for generalized coordinates?
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In general: N particles require 3N coordinates. Suppose there are m constraints:

fj = (xi, yi, zi, t) = 0 j = 1, 2, ...,m Holonomic Constraint

=⇒ (q1, q2, ..., q3N−m) generalized coordinates

Non-holonomic Constrains: e.g [(x2 +y2 + z2−R2)] ≥ 0 (we cannot go inside the earth).
This cannot be used to reduce the number of degrees of freedom.

(i) Point in a ball rolling on a table =⇒ still needs 3 coordinates to describe points; con-
straint only binds z ∈ [0, 2R].

(ii) Ball rolling without slipping on a table =⇒ velocity constraint, not coordinate con-
straint! (Angular orientation of ball, position in the plane),

=⇒ There are the coordinates (x, y, z, θ, φ) for the ball. We have the holonomic constraint
z = 0 and the non-holonomic constraint V⊥ =

√
ẋ2 + ẏ2 = Rθ̇. Hence there are 4 degrees of

freedom.
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