Lecture 26: The Principle of Least Action (Hamilton's Principle)

Where does $\vec{F}=m \vec{a}$ or $-\vec{\nabla} V=m \ddot{\vec{r}}$ come from? Is there a more fundamental reason as to why these equations hold?

Define the Lagrangian function as

$$
\mathcal{L}=T-V
$$

For example, in a conservative system in 1D we would have

$$
\mathcal{L}(y, \dot{y})=\frac{1}{2} m \dot{y}^{2}-V(y)
$$

Suppose that a particle starts at $y_{1}=y\left(t_{1}\right)$ and ends its trajectory at $y_{2}=y\left(t_{2}\right)$. The path taken is a particular $(y(t), \dot{y}(t))$ trajectory; the action of this trajectory is given by

$$
J=\int_{t_{1}}^{t_{2}} \mathcal{L} d t
$$

Hamilton's principle states that out of all the infinite family of motions $(y(t), \dot{y}(t))$, the actual motion that takes place is the one for which the action is an extrema:

$$
\delta J=\delta \int_{t_{1}}^{t_{2}} \mathcal{L} d t=0
$$

i.e., any variation on top of this motion $(y(t)+n(t), \dot{y}+\dot{n})$ with endpoints fixed $\left(n\left(t_{1}\right)=\right.$ $n\left(t_{2}\right)=0$) vanishes in 1st order. The usual situation is that J has a global minimum at the actual trajectory.

Functional Derivative:

$$
J=J[y(t)] \quad, \quad \frac{\delta J}{\delta y}=0
$$

Example: Particle in Free Fall

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} m \dot{y}^{2}-m g y \\
\delta J=\delta \int_{t_{1}}^{t_{2}} \mathcal{L} d t & =\delta \int_{t_{1}}^{t_{2}}\left[\frac{m}{2} \dot{y}^{2}-m g y\right] d t \\
& =\int_{t_{1}}^{t_{2}}\left[\frac{m}{2} 2 \dot{y} \delta y-m g \delta y\right] d t
\end{aligned}
$$

Note that $\delta \dot{y}=\frac{d}{d t}(\delta y)$. We integrate the first term by parts $\int u d v=u v-\int v d u$. Let $u=m \dot{y}$ and $\frac{d}{d t}(\delta y)=d v$. Then we have

$$
\int_{t_{1}}^{t_{2}} m \dot{y} \frac{d}{d t}(\delta y) d t=\left.m \dot{y}(\delta y)\right|_{t_{1}} ^{t_{2}}-\int(\delta y) \frac{d}{d t}(m \dot{y}) d t
$$

Note that $\left.m \dot{y}(\delta y)\right|_{t_{1}} ^{t_{2}}=0$ since $\delta y\left(t_{i}\right)=0$. Hence

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} m \dot{y} \frac{d}{d t}(\delta y) d t=-\int(\delta y) \frac{d}{d t}(m \dot{y}) d t=-\int m \ddot{y}(\delta y) d t \\
\Longrightarrow \quad \delta J=-\int_{t_{1}}^{t_{2}}[m \ddot{y}+m g](\delta y) d t
\end{gathered}
$$

This $=0$ for any arbitrary (δy) if and only if

$$
m \ddot{y}=-m g \quad \text { Newton's 2nd law! }
$$

We proved that $\delta J=0$ for the actual trajectory. Is J a minimum or a maximum?
Actual trajectory: $y(t)=-\frac{1}{2} g t^{2} \quad\left(y(t=0)=0, y\left(t=t_{2}\right)=-\frac{1}{2} g t_{2}{ }^{2}\right)$

Assume $y(\alpha, t)=y(0, t)+\alpha n(t)$ where $y(0, t)$ is the actual solution, α is a bookkeeping constant, and $n(t)$ is some arbitrary function.

$J(\alpha)=\int_{t_{1}}^{t_{2}} d t \mathcal{L}[y(\alpha, t), \dot{y}(\alpha, t)] \quad\left\{\begin{array}{l}\dot{y}(\alpha, t)=\dot{y}(0, t)+\alpha \dot{n}(t)=(-g t+\alpha \dot{n}) \\ T=\frac{1}{2} m \dot{y}^{2}=\frac{1}{2} m[-g t+\alpha \dot{n}]^{2} \\ V=m g y=m g\left[-\frac{1}{2} g t^{2}+\alpha n\right]\end{array}\right.$

$$
\begin{aligned}
J(\alpha) & =\int_{t_{1}}^{t_{2}} d t\left(\frac{1}{2} m\left[g^{2} t^{2}-2 g t \alpha \dot{n}+\alpha^{2} \dot{n}^{2}\right]-m g\left[-\frac{1}{2} g t^{2}+\alpha n\right]\right) \\
& =\int_{t_{1}}^{t_{2}} d t\left(m g^{2} t^{2}-m g \alpha(t \dot{n}+n)+\frac{1}{2} m \alpha^{2} \dot{n}^{2}\right) \\
& =\int_{t_{1}}^{t_{2}} d t\left(m g^{2} t^{2}-m g \alpha(-n+n)+\frac{1}{2} m \alpha^{2} \dot{n}^{2}\right) \\
& =\frac{m g^{2}}{3}\left(t_{2}^{3}-t_{1}^{3}\right)+\frac{1}{2} m \alpha^{2} \int_{t_{1}}^{t_{2}} d t \dot{n}^{2}=J_{0}+J_{1} \alpha^{2}
\end{aligned}
$$

Hence $J(\alpha=0)$ is a local minimum in the space of all functions $n(t)$!

$$
\left.\frac{\partial J(\alpha)}{\partial \alpha}\right|_{\alpha=0}=0
$$

Generalized Coordinates

Consider a pendulum in the xy plane. How many degrees of freedom does it have?

(x, y, z) are inter-related. The two constraints are $z=0$ and $r^{2}-\left(x^{2}+y^{2}\right)=0$.
$\Longrightarrow \quad$ only one independent degree of freedom. We can choose x, but that's awkward. It's even double valued (we can have the same x with a different configuration).

The natural choice is θ : here we only need a single number to determine the location of the pendulum.

Generalized Coordinates are any collection of independent variables ($q_{1}, q_{2}, \ldots, q_{n}$) (not connected by any equation of constraint) that just suffice to specify uniquely the configuration of a system of particles. The number n of open coordinates is equal to the system's degree of freedom.

For example, if we use:
(i) Smaller \# than n coordinates: System's motion is indeterminate
(ii) Larger \# than n coordinates: Some coordinates are completely given by others

Another Example: Consider two particles connected by a rigid rod.

$$
\left\{\begin{array}{l}
6 \text { coordinates : }\left(x_{1}, y_{1}, z_{1}\right) \quad, \quad\left(x_{2}, y_{2}, z_{2}\right) \\
\text { One constraint : } d^{2}-\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]=0
\end{array}\right.
$$

$\Longrightarrow \quad 5$ degrees of freedom. Natural choice for generalized coordinates?

In general: N particles require $3 N$ coordinates. Suppose there are m constraints:

$$
\begin{gathered}
f_{j}=\left(x_{i}, y_{i}, z_{i}, t\right)=0 \quad j=1,2, \ldots, m \quad \text { Holonomic Constraint } \\
\Longrightarrow \quad\left(q_{1}, q_{2}, \ldots, q_{3 N-m}\right) \quad \text { generalized coordinates }
\end{gathered}
$$

Non-holonomic Constrains: e.g $\left[\left(x^{2}+y^{2}+z^{2}-R^{2}\right)\right] \geq 0$ (we cannot go inside the earth). This cannot be used to reduce the number of degrees of freedom.
(i) Point in a ball rolling on a table \Longrightarrow still needs 3 coordinates to describe points; constraint only binds $z \in[0,2 R]$.
(ii) Ball rolling without slipping on a table \Longrightarrow velocity constraint, not coordinate constraint! (Angular orientation of ball, position in the plane),

(ii)

\Longrightarrow There are the coordinates (x, y, z, θ, ϕ) for the ball. We have the holonomic constraint $z=0$ and the non-holonomic constraint $V_{\perp}=\sqrt{\dot{x}^{2}+\dot{y}^{2}}=R \dot{\theta}$. Hence there are 4 degrees of freedom.

