PHYS 321A Lecture Notes 26 University of Victoria

Lecture 26: The Principle of Least Action (Hamilton’s
Principle)

Where does F = md or —VV = mi* come from? Is there a more fundamental reason as to
why these equations hold?

Define the Lagrangian function as
L=T-V

For example, in a conservative system in 1D we would have

L(y.9) = ymif ~V(y)

Suppose that a particle starts at y; = y(¢;) and ends its trajectory at yo = y(t2). The path
taken is a particular (y(t),y(t)) trajectory; the action of this trajectory is given by

to
J = / Ldt
t1

Hamilton’s principle states that out of all the infinite family of motions (y(t),y(t)), the ac-
tual motion that takes place is the one for which the action is an extrema:

[)
(5J—5/ Ldt =0

t1

i.e., any variation on top of this motion (y(t) + n(t),y + n) with endpoints fixed (n(t;) =
n(ty) = 0) vanishes in 1st order. The usual situation is that J has a global minimum at the
actual trajectory.

Functional Derivative:
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Example: Particle in Free Fall

1
L= §mg)2 — mgy

to to
6J:5/ Ldt = 5/ [Eyz—mgy} dt
t1 t1 2

= /t2 [%ngéy — mgéy] dt

t1

Note that oy = %(dy). We integrate the first term by parts [ udv = uv— [ vdu. Let u = my
and 4 (8y) = dv. Then we have

/t me%(éy)dt = my(oy)],; - / (5y)%(my)dt

1

Note that my(éy)‘z = 0 since dy(t;) = 0. Hence

This = 0 for any arbitrary (dy) if and only if

miy = —mg| Newton’s 2nd law!
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We proved that 6J = 0 for the actual trajectory. Is J a minimum or a maximum?

1
Actual trajectory: |y(t) = —§gt2 (y(t =0)=0,y(t = t2) = —1gts?)

Assume y(a,t) = y(0,t) + an(t) where y(0,t) is the actual solution, a is a bookkeeping
constant, and n(t) is some arbitrary function.

g

y(a,t) = 5(0, t) + an(t) = (—gt + an)
sy’ = 3m[—gt + an]?
mgy = mg [—59t2 + ozn}

J(a) = / S atLliy(ant), il )] T
t1 V

1
m [thQ — 2gtan + a2h2} — mg[—ﬁth + om]>

=
L
I
- Ny
QL

~
VR
DN | —

to 1
= / dt (mg2t2 —mga(tn +n) + émath)
t1

1
2 —mga(—n+n) + §m042n2)

I
:\;
[ )
.
~
N

1 t2
= (t3 =t} + §ma2/ dtn* = Jo+ Jia®

t1
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Hence J(a = 0) is a local minimum in the space of all functions n(t)!

9J(c)

8@ a=0

=0

J(o)

Generalized Coordinates

Consider a pendulum in the xy plane. How many degrees of freedom does it have?

y
s
/
/
s
%
s
/
%
_________ | -
AN

(z,y,2) are inter-related. The two constraints are z = 0 and r? — (2% + y?) = 0.

—>  only one independent degree of freedom. We can choose z, but that’s awkward.
It’s even double valued (we can have the same x with a different configuration).

The natural choice is 8: here we only need a single number to determine the location of the
pendulum.
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Generalized Coordinates are any collection of independent variables (qi, g, ..., ¢n) (not
connected by any equation of constraint) that just suffice to specify uniquely the configu-
ration of a system of particles. The number n of open coordinates is equal to the system’s
degree of freedom.

For example, if we use:

(i) Smaller # than n coordinates: System’s motion is indeterminate

(ii) Larger # than n coordinates: Some coordinates are completely given by others

Another Example: Consider two particles connected by a rigid rod.

x y

6 coordinates : (ml,yl,zl) , (xz,y2,22)
One constraint : d* — [(z1 — 22)?> + (y2 — y1)*> + (22 — 21)?] =0

=—> 5 degrees of freedom. Natural choice for generalized coordinates?

(x,y,2) and (0,0)

center of mass zenoth and azimuthal
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In general: N particles require 3N coordinates. Suppose there are m constraints:

fi= (i, yi,2,t) =0 i=12..m ’Holonomic Constraint

= (1,92 s @3N—m) generalized coordinates

Non-holonomic Constrains: e.g [(z%+y*+2? — R?)] > 0 (we cannot go inside the earth).
This cannot be used to reduce the number of degrees of freedom.

(i) Point in a ball rolling on a table = still needs 3 coordinates to describe points; con-
straint only binds z € [0, 2R].

(ii) Ball rolling without slipping on a table = velocity constraint, not coordinate con-
straint! (Angular orientation of ball, position in the plane),

(1) (x,y, z) for a point

(ii)

== There are the coordinates (z,y, 2,0, ¢) for the ball. We have the holonomic constraint
z = 0 and the non-holonomic constraint V|, = 1/4? 4+ y? = Rf. Hence there are 4 degrees of
freedom.
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