PHYS 321A Lecture Notes 27 University of Victoria

Lecture 27: Generalized Coordinates and Lagrange’s
Equations of Motion

Calculating T" and V' in terms of generalized coordinates.

Example: Pendulum attached to a movable support

6 Cartesian Coordinates: (X,Y, 7) and (z,v, 2).
4 Holonomic constrains:

{Z:O LY =0
2=0; [(z=XP +@H-Y)?]-r"=0

—> two generalized coordinates! Choose X and 6. (Note: we can change 6 without
changing X; therefore § and X are independent).

1 1
T = -Mi* + —m(i* + %)

2 2
V =mgy
x=X+rsinf i =X +r6cost
y = —rcost - y=+résin9
1 ., 1 . . ) o
T = émX +gm [(X +rf cos)” + (rfsinh)
1

. 1 . o . .
= §mX2 + §m [X2 + 2X 716 cos b + r20? cos® O + r26% sin? 6
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T = Y(M+m)X?+ im |r?0? + 2r X0 cos 0

V = —mgrcosf
Notice how 2r X6 cos corresponds to a “cross term.” This plays an important role, and it
is difficult to get it correctly without starting from Cartesian coordinates.
In addition, note that V' only depends on # and is independent of X! This has important

consequences as we will see later.

In general, if there are N particles each with cartesian coordinates (x;, y;, z;),7 = 1, ..., N and
m holonomic constraints, we can reduce the system to n = 3N — m generalized coordinates
(# of degrees of freedom). We specify these as

(7: (Q17QZ> 7QH)

We have

(j:i = 2?:1 gi; q; = xz(Qu (f)

. n o Oy - :
Yi = yz(cj) == Yi = Zj 1 83] q; yz(Qucf)

\Zi:Z;L 13(2% = %(q.9)

Lagrange’s Equations of Motion for a Conservative System

Hamilton’s principle:

to to

t1 t1

- [E o el -

)
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We integrate the second term by parts. Let u = g{f and dv = d(gfi):

. d 2.9L d(dq;) oL t2 2 d (0L
@)= 0w — [5G S| = [ 5 (5 ) on
and since
oL t2
(Si -
aqz-( Q)tl 0

we have that

6J:/t2dtz

t1 i

Kg;) - % (gj)] (0g;) = 0

(0g;) is completely arbitrary; the only requirement is that the endpoints are fixed. Con-
sequently, the only way ¢J can vanish, given the infinite varieties of (d¢); is that each

component variable, i.e,:
oL d (0L
- — =0 i =1,...
(8%) dt (8(]1) ’ et

(Conservative, subject only to holonomic constraints).

n Lagrangian equations of motion for n degrees of freedom.

Applications
(i): Find suitable set of independent general coordinates ¢;
(ii): Find Cartesian coordinates as one of general coordinates: ;(q), vi(q), z:(q)
(iii): Find T and V as a function of ¢, ¢; Find £({,{) =T — V.
d (dL

(iv): Use g—; — 4i(gz) = 0 to find the equations of motion.
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Example 1: Harmonic Oscillator

T

>
- L o 1 5
£(m,x):T—V:§mx —§kx

9 = _kx oL d (dL d
ox .
—— | —=]1=0 = —kzx— — =
—gfé =mz } dq; dt (dq’) 0 . dt(mx 0)

Example 2: Particle in a Central Force Field

m

‘a Choose ¢ = (r,6)
x

r=rcos) =— i=r1cosl—rfsind
y=rsingd = ¢ =rsind+rfcosd

z2=0 = z=0
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1

1

= — |72cos?0 — 2rrfsin 6 cos O + 1202 sin? 0 + 72 sin? 0 + 2r70 sin 0 cos O + 1262 cos? 6’]

2

1 .
= §m[r292 +7% , and V =V(r)

and hence we have

L= %m[rQQQ +7% =V (r)

Two equations of motion:

(i): For r
oc_d (oL
or dt \or)
oV d

2 —_——— — =

mo B dt(m’r)
mir = _0_\/ + mr6?

or

(ii): For 6

oL _d (LY
00  dt \ 9o /)

_ 20 —
0 dt(mr g) =0

Note: Conservation law becomes “auto-
matic’! = we get a “constant of motion”
for each ¢; that does not appear explicitly in

Note that —0V/dr is the central force and £-

mr6? is the centrifugal force.
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Example 3: Atwood’s Machine

m

Pulley has moment of inertia 7; hence we have two Cartesian coordinates plus the constraint
x1 +ma+ xo =1 (I is the length of the cord).

Use x = x; as coordinate:

1 1 /i\? 1
T = §m1:i02 + 5] (g) + §m2:t2

Note that (i/a)? = 2. We also have that

V = —migx; —maegrs = —migr —maeg(l — ma — x)
V = —(m1—may)gr —mag(l — ma)
Hence
1 o LT\ 4
L= §(m1 +mg)z® + sl )+ (mq — mg)gx + meg(l — ma)
Now

i 8_£ — a_[’ — + _|_£ "—( _ )
dt \oi ) \ Oz I a? T g

.. my — My
<m1—|—m2+a—2>

We see here that a massive pulley reduces acceleration.
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Example 4: The Double Atwood Machine (neglect pulley radii)

Let z; denote the distance to the mass m; from the upper pulley and let x, denote the
distance to the pulley which moves (the lower pulley). Let [ be the length of the upper rope
and I’ be the length of the lower rope. Note that

8

(l—z)+a
(l—x)+ 1 —2a)

1

€2
T3
We thus have the following constraints:

T+, =1
(g —xp) + (23 —xp) =1 = aata3—2(l—21) =1

Now

1 1 1
T = §m1x'2 + §m2(—x' + .i’/)2 + ng(—:b — i’)Q

V =—mygx —maeg(l —x+2') —mgg(l —x +1' — 2')
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1 1 1
— L =T-V = §m1m'2 + §m2(5g2 — 2i'% + 3"%) + 5mg(fc2 + 233’ + %)

+(my — mg — m3)gz + (mg — m3)gx’ + constant

i)~ (5)

(mq + mg +m3)@ + (m3 — ma)Z’ = (my —mg —ma3)g

(ii)

d(ocy _(oc
dt \oi' ) \ox

(mg + m3)i’ + (m3 — ma)Z = (my — m3)g

We obtain the accelerations by solving this system of two equations and two unknowns (&
and ')

(mg — ma)? + (mg + mg)(my — my — my)

(m3 — mgy)? — (mg + m3)(my + ms + mg)

In the homework, be wary of the “double-double” Atwood machine (m; is replaced by a
pulley which itself holds two masses).
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Example 5: Particle Sliding on a movable inclined plane

Let V be the velocity of the inclined plane and ' be the velocity of the block. Then
V=i
U = id + éoi’

where ég = (cos, —sin ). We thus have

1 1 1 1,
T = §MV2+§mv2 = §M:i32+§m(i:i:+é9:t’)2

1 1
= §M$2 +om [(& + cos 6i")* + (sin 63')?]

1 1
= §M:fc2 + 3 [:'EQ + 2cos 0zt + cos?® 0" + sin? 9:50’2}

1 1
= 5M:'c2 +5m [i* + 2 cos O’ + 3]

and

V = mg|[Lsinf — 2’ sin f] = (constant) — mg sin 0z’

where L is the length of the plane. Hence

1 1
L=T-V= §(M +m)a? + mcos 0ii’ + émx"2 + mg sin 6z’
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Equations of Motion:

(i)

a (ocy _ (ot
dt \ oz ) \ oz
d

= a((M—l—m)i:—i—mcos&:’c') =0

(since L is independent of ). Note that conservation of momentum comes out automatically.

(i1
i (5%) = (#)

= —(mcosfz +mi') = mgsinf

dt

We now have two equations and two unknowns:

{(M+m)j5+mcos9:‘t' =0

cos O + &' = gsinf

Solving for # and ' yields

" gsin6 . gsinfcosf
Tr = r=—-——
—_m__ 2 m+M 2
1 m+M cos® 0 m cos? 0
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