Lecture 27: Generalized Coordinates and Lagrange's Equations of Motion

Calculating T and V in terms of generalized coordinates.
Example: Pendulum attached to a movable support

6 Cartesian Coordinates: (X, Y, Z) and (x, y, z).
4 Holonomic constrains:

$$
\left\{\begin{array}{ll}
Z=0 & ; \quad Y=0 \\
z=0 & ;
\end{array}\left[(x-X)^{2}+(y-Y)^{2}\right]-r^{2}=00\right.
$$

\Longrightarrow two generalized coordinates! Choose X and θ. (Note: we can change θ without changing X ; therefore θ and X are independent).

$$
\begin{gathered}
T=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
V=m g y \\
\left\{\begin{array} { l }
{ x = X + r \operatorname { s i n } \theta } \\
{ y = - r \operatorname { c o s } \theta } \\
{ X = X }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{x}=\dot{X}+r \dot{\theta} \cos \theta \\
\dot{y}=+r \dot{\theta} \sin \theta \\
\dot{X}=\dot{X}
\end{array}\right.\right. \\
T=\frac{1}{2} m \dot{X}^{2}+\frac{1}{2} m\left[(\dot{X}+r \dot{\theta} \cos \theta)^{2}+(r \dot{\theta} \sin \theta)^{2}\right] \\
=\frac{1}{2} m \dot{X}^{2}+\frac{1}{2} m\left[\dot{X}^{2}+2 \dot{X} r \dot{\theta} \cos \theta+r^{2} \dot{\theta}^{2} \cos ^{2} \theta+r^{2} \dot{\theta}^{2} \sin ^{2} \theta\right]
\end{gathered}
$$

$$
\left\{\begin{array}{l}
T=\frac{1}{2}(M+m) \dot{X}^{2}+\frac{1}{2} m\left[r^{2} \dot{\theta}^{2}+2 r \dot{X} \dot{\theta} \cos \theta\right] \\
V=-m g r \cos \theta
\end{array}\right.
$$

Notice how $2 r \dot{X} \dot{\theta} \cos \theta$ corresponds to a "cross term." This plays an important role, and it is difficult to get it correctly without starting from Cartesian coordinates.

In addition, note that V only depends on θ and is independent of $X!$ This has important consequences as we will see later.

In general, if there are N particles each with cartesian coordinates $\left(x_{i}, y_{i}, z_{i}\right), i=1, \ldots, N$ and m holonomic constraints, we can reduce the system to $n=3 N-m$ generalized coordinates (\# of degrees of freedom). We specify these as

$$
\vec{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)
$$

We have

$$
\left\{\begin{array} { l }
{ x _ { i } = x _ { i } (\vec { q }) } \\
{ y _ { i } = y _ { i } (\vec { q }) } \\
{ z _ { i } = z _ { i } (\vec { q }) }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
\dot{x}_{i}=\sum_{j=1}^{n} \frac{\partial x_{i}}{\partial q_{j}} \dot{q}_{j}=\dot{x}_{i}(\vec{q}, \dot{\vec{q}}) \\
\dot{y}_{i}=\sum_{j=1}^{n} \frac{\partial y_{i}}{\partial q_{j}} \dot{q}_{j}=\dot{y}_{i}(\vec{q}, \dot{\vec{q}}) \\
\dot{z}_{i}=\sum_{j=1}^{n} \frac{\partial z_{i}}{\partial q_{j}} \dot{q}_{j}=\dot{z}_{i}(\vec{q}, \dot{\vec{q}})
\end{array}\right.\right.
$$

Lagrange's Equations of Motion for a Conservative System

Hamilton's principle:

$$
\begin{aligned}
& \delta J=\delta \int_{t_{1}}^{t_{2}} \mathcal{L}\left(q_{i}, \dot{q}_{i}\right) d t=\int_{t_{1}}^{t_{2}} \delta \mathcal{L} d t=0 \\
& =\int_{t_{1}}^{t_{2}} \sum_{i}\left[\frac{\partial \mathcal{L}}{\partial q_{i}}\left(\delta q_{i}\right)+\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\left(\delta \dot{q}_{i}\right)\right] d t=0
\end{aligned}
$$

We integrate the second term by parts. Let $u=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}$ and $d v=\frac{d\left(\partial q_{i}\right)}{d t}$:

$$
\delta\left(\dot{q}_{i}\right)=\frac{d}{d t}\left(\delta q_{i}\right) \Longrightarrow \int_{t_{1}}^{t_{2}} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \frac{d\left(\partial q_{i}\right)}{d t} d t=\left.\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\left(\delta q_{i}\right)\right|_{t_{1}} ^{t_{2}}-\int_{t_{1}}^{t_{2}} \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial q_{i}}\right)\left(\delta q_{i}\right) d t
$$

and since

$$
\left.\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\left(\delta q_{i}\right)\right|_{t_{1}} ^{t_{2}}=0
$$

we have that

$$
\delta J=\int_{t_{1}}^{t_{2}} d t \sum_{i}\left[\left(\frac{\partial \mathcal{L}}{\partial q_{i}}\right)-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right)\right]\left(\delta q_{i}\right)=0
$$

$\left(\delta q_{i}\right)$ is completely arbitrary; the only requirement is that the endpoints are fixed. Consequently, the only way δJ can vanish, given the infinite varieties of $(\delta q)_{i}$ is that each component variable, i.e,:

$$
\left(\frac{\partial \mathcal{L}}{\partial q_{i}}\right)-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right)=0 \quad i=1, \ldots, n
$$

(Conservative, subject only to holonomic constraints).
n Lagrangian equations of motion for n degrees of freedom.

Applications

(i): Find suitable set of independent general coordinates q_{i}
(ii): Find Cartesian coordinates as one of general coordinates: $x_{i}(\vec{q}), y_{i}(\vec{q}), z_{i}(\vec{q})$
(iii): Find T and V as a function of \vec{q}, \vec{q}_{i}; Find $\mathcal{L}(\vec{q}, \dot{\vec{q}})=T-V$
(iv): Use $\frac{\partial \mathcal{L}}{\partial q_{i}}-\frac{d}{d t}\left(\frac{d \mathcal{L}}{d \dot{q}_{i}}\right)=0$ to find the equations of motion.

Example 1: Harmonic Oscillator

$$
\begin{aligned}
& \mathcal{L}(x, \dot{x})=T-V=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2} \\
&\left.\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}=-k x \\
\frac{\partial \mathcal{L}}{\partial \dot{x}}=m \dot{x}
\end{array}\right\} \quad \frac{\partial \mathcal{L}}{\partial q_{i}}-\frac{d}{d t}\left(\frac{d \mathcal{L}}{d \dot{q}_{i}}\right)=0 \Longrightarrow-k x-\frac{d}{d t}(m \dot{x}=0) \\
& \Longrightarrow-k x-m \ddot{x}=0 \\
& \Longrightarrow-k x=m \ddot{x}
\end{aligned}
$$

Example 2: Particle in a Central Force Field

Choose $\vec{q}=(r, \theta)$

$$
\begin{aligned}
x=r \cos \theta & \Longrightarrow \quad \dot{x}=\dot{r} \cos \theta-r \dot{\theta} \sin \theta \\
y=r \sin \theta & \Longrightarrow \quad \dot{y}=\dot{r} \sin \theta+r \dot{\theta} \cos \theta \\
z=0 & \Longrightarrow \quad \dot{z}=0
\end{aligned}
$$

$$
\begin{aligned}
T & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& =\frac{1}{2}\left[\dot{r}^{2} \cos ^{2} \theta-2 r \dot{r} \dot{\theta} \sin \theta \cos \theta+r^{2} \dot{\theta}^{2} \sin ^{2} \theta+\dot{r}^{2} \sin ^{2} \theta+2 r \dot{r} \dot{\theta} \sin \theta \cos \theta+r^{2} \dot{\theta}^{2} \cos ^{2} \theta\right] \\
& =\frac{1}{2} m\left[r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right] \quad, \quad \text { and } V=V(r)
\end{aligned}
$$

and hence we have

$$
\mathcal{L}=\frac{1}{2} m\left[r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right]-V(r)
$$

Two equations of motion:
(i): For r

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial r}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right)=0 \\
m \dot{\theta}^{2} r-\frac{\partial V}{\partial r}-\frac{d}{d t}(m \dot{r})=0
\end{gathered}
$$

$$
m \ddot{r}=-\frac{\partial V}{\partial r}+m r \dot{\theta}^{2}
$$

Note that $-\partial V / \partial r$ is the central force and \mathcal{L}.
(ii): For θ

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \theta}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)=0 \\
0-\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0
\end{gathered}
$$

$$
\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0
$$

Note: Conservation law becomes "automatic"! \Longrightarrow we get a "constant of motion" for each q_{i} that does not appear explicitly in $m r \dot{\theta}^{2}$ is the centrifugal force.

Example 3: Atwood's Machine

Pulley has moment of inertia I; hence we have two Cartesian coordinates plus the constraint $x_{1}+\pi a+x_{2}=l(l$ is the length of the cord $)$.

Use $x=x_{1}$ as coordinate:

$$
T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} I\left(\frac{\dot{x}}{a}\right)^{2}+\frac{1}{2} m_{2} \dot{x}^{2}
$$

Note that $(\dot{x} / a)^{2}=\dot{\theta}^{2}$. We also have that

$$
\begin{gathered}
V=-m_{1} g x_{1}-m_{2} g x_{2}=-m_{1} g x-m_{2} g(l-\pi a-x) \\
V=-\left(m_{1}-m_{2}\right) g x-m_{2} g(l-\pi a)
\end{gathered}
$$

Hence

$$
\mathcal{L}=\frac{1}{2}\left(m_{1}+m_{2}\right) \dot{x}^{2}+\frac{1}{2}\left(\frac{I}{a^{2}}\right) \dot{x}^{2}+\left(m_{1}-m_{2}\right) g x+m_{2} g(l-\pi a)
$$

Now

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)=\left(\frac{\partial \mathcal{L}}{\partial x}\right) & \Longrightarrow\left(m_{1}+m_{2}+\frac{I}{a^{2}}\right) \ddot{x}=\left(m_{1}-m_{2}\right) g \\
& \Longrightarrow \quad \ddot{x}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}+\frac{I}{a^{2}}}\right) g
\end{aligned}
$$

We see here that a massive pulley reduces acceleration.

Example 4: The Double Atwood Machine (neglect pulley radii)

Let x_{i} denote the distance to the mass m_{i} from the upper pulley and let x_{p} denote the distance to the pulley which moves (the lower pulley). Let l be the length of the upper rope and l^{\prime} be the length of the lower rope. Note that

$$
\left\{\begin{array}{l}
x_{1}=x \\
x_{2}=(l-x)+x^{\prime} \\
x_{3}=(l-x)+\left(l^{\prime}-x^{\prime}\right)
\end{array}\right.
$$

We thus have the following constraints:

$$
\begin{aligned}
& x_{1}+x_{p}=l \\
& \left(x_{2}-x_{p}\right)+\left(x_{3}-x_{p}\right)=l^{\prime} \quad \Longrightarrow \quad x_{2}+x_{3}-2\left(l-x_{1}\right)=l^{\prime}
\end{aligned}
$$

Now

$$
\begin{aligned}
& T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(-\dot{x}+\dot{x}^{\prime}\right)^{2}+\frac{1}{2} m_{3}\left(-\dot{x}-\dot{x}^{\prime}\right)^{2} \\
& V=-m_{1} g x-m_{2} g\left(l-x+x^{\prime}\right)-m_{3} g\left(l-x+l^{\prime}-x^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow \mathcal{L}=T-V= & \frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(\dot{x}^{2}-2 \dot{x}^{\prime} \dot{x}+\dot{x}^{\prime 2}\right)+\frac{1}{2} m_{3}\left(\dot{x}^{2}+2 \dot{x} \dot{x}^{\prime}+\dot{x}^{\prime 2}\right) \\
& +\left(m_{1}-m_{2}-m_{3}\right) g x+\left(m_{2}-m_{3}\right) g x^{\prime}+\text { constant }
\end{aligned}
$$

(i)

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)=\left(\frac{\partial \mathcal{L}}{\partial x}\right) \\
\left(m_{1}+m_{2}+m_{3}\right) \ddot{x}+\left(m_{3}-m_{2}\right) \ddot{x}^{\prime}=\left(m_{1}-m_{2}-m_{3}\right) g
\end{gathered}
$$

(ii)

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{\prime}}\right)=\left(\frac{\partial \mathcal{L}}{\partial x^{\prime}}\right) \\
\left(m_{2}+m_{3}\right) \ddot{x}^{\prime}+\left(m_{3}-m_{2}\right) \ddot{x}=\left(m_{2}-m_{3}\right) g
\end{gathered}
$$

We obtain the accelerations by solving this system of two equations and two unknowns (\ddot{x} and \ddot{x}^{\prime})

$$
\Longrightarrow \quad \ddot{x}=-g\left[\frac{\left(m_{3}-m_{2}\right)^{2}+\left(m_{2}+m_{3}\right)\left(m_{1}-m_{2}-m_{3}\right)}{\left(m_{3}-m_{2}\right)^{2}-\left(m_{2}+m_{3}\right)\left(m_{1}+m_{2}+m_{3}\right)}\right]
$$

In the homework, be wary of the "double-double" Atwood machine (m_{1} is replaced by a pulley which itself holds two masses).

Example 5: Particle Sliding on a movable inclined plane

Let \vec{V} be the velocity of the inclined plane and \vec{v} be the velocity of the block. Then

$$
\begin{aligned}
& \vec{V}=\hat{i} \dot{x} \\
& \vec{v}=\hat{i} \dot{x}+\hat{e}_{\theta} \dot{x}^{\prime}
\end{aligned}
$$

where $\hat{e}_{\theta}=(\cos \theta,-\sin \theta)$. We thus have

$$
\begin{aligned}
T=\frac{1}{2} M V^{2}+\frac{1}{2} m v^{2} & =\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left(\hat{i} \dot{x}+\hat{e}_{\theta} \dot{x}^{\prime}\right)^{2} \\
& =\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left[\left(\dot{x}+\cos \theta \dot{x}^{\prime}\right)^{2}+\left(\sin \theta \dot{x}^{\prime}\right)^{2}\right] \\
& =\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left[\dot{x}^{2}+2 \cos \theta \dot{x} \dot{x}^{\prime}+\cos ^{2} \theta \dot{x}^{\prime 2}+\sin ^{2} \theta \dot{x}^{\prime 2}\right] \\
& =\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left[\dot{x}^{2}+2 \cos \theta \dot{x} \dot{x}^{\prime}+\dot{x}^{\prime 2}\right]
\end{aligned}
$$

and

$$
V=m g\left[L \sin \theta-x^{\prime} \sin \theta\right]=(\text { constant })-m g \sin \theta x^{\prime}
$$

where L is the length of the plane. Hence

$$
\mathcal{L}=T-V=\frac{1}{2}(M+m) \dot{x}^{2}+m \cos \theta \dot{x} \dot{x}^{\prime}+\frac{1}{2} m \dot{x}^{\prime 2}+m g \sin \theta x^{\prime}
$$

Equations of Motion:
(i)

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)=\left(\frac{\partial \mathcal{L}}{\partial x}\right) \\
\Longrightarrow \quad & \frac{d}{d t}\left((M+m) \dot{x}+m \cos \theta \dot{x}^{\prime}\right)=0
\end{aligned}
$$

(since \mathcal{L} is independent of x). Note that conservation of momentum comes out automatically.
(ii)

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{\prime}}\right)=\left(\frac{\partial \mathcal{L}}{\partial x^{\prime}}\right) \\
\Longrightarrow \quad & \frac{d}{d t}\left(m \cos \theta \dot{x}+m \dot{x}^{\prime}\right)=m g \sin \theta
\end{aligned}
$$

We now have two equations and two unknowns:

$$
\left\{\begin{array}{l}
(M+m) \ddot{x}+m \cos \theta \ddot{x}^{\prime}=0 \\
\cos \theta \ddot{x}+\ddot{x}^{\prime}=g \sin \theta
\end{array}\right.
$$

Solving for \ddot{x} and \ddot{x}^{\prime} yields

$$
\ddot{x}^{\prime}=\frac{g \sin \theta}{1-\frac{m}{m+M} \cos ^{2} \theta} \quad \ddot{x}=-\frac{g \sin \theta \cos \theta}{\frac{m+M}{m}-\cos ^{2} \theta}
$$

