
PHYS 321A Lecture Notes 27 University of Victoria

Lecture 27: Generalized Coordinates and Lagrange’s

Equations of Motion

Calculating T and V in terms of generalized coordinates.

Example: Pendulum attached to a movable support

6 Cartesian Coordinates: (X, Y, Z) and (x, y, z).

4 Holonomic constrains:{
Z = 0 ; Y = 0

z = 0 ; [(x−X)2 + (y − Y )2]− r2 = 0

=⇒ two generalized coordinates! Choose X and θ. (Note: we can change θ without
changing X; therefore θ and X are independent).

T =
1

2
Mẋ2 +

1

2
m(ẋ2 + ẏ2)

V = mgy


x = X + r sin θ

y = −r cos θ

X = X

=⇒


ẋ = Ẋ + rθ̇ cos θ

ẏ = +rθ̇ sin θ

Ẋ = Ẋ

T =
1

2
mẊ2 +

1

2
m
[
(Ẋ + rθ̇ cos θ)2 + (rθ̇ sin θ)2

]

=
1

2
mẊ2 +

1

2
m
[
Ẋ2 + 2Ẋrθ̇ cos θ + r2θ̇2 cos2 θ + r2θ̇2 sin2 θ

]
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T = 1

2
(M +m)Ẋ2 + 1

2
m
[
r2θ̇2 + 2rẊθ̇ cos θ

]
V = −mgr cos θ

Notice how 2rẊθ̇ cos θ corresponds to a “cross term.” This plays an important role, and it
is difficult to get it correctly without starting from Cartesian coordinates.

In addition, note that V only depends on θ and is independent of X! This has important
consequences as we will see later.

In general, if there are N particles each with cartesian coordinates (xi, yi, zi), i = 1, ..., N and
m holonomic constraints, we can reduce the system to n = 3N −m generalized coordinates
(# of degrees of freedom). We specify these as

~q = (q1, q2, ..., qn)

We have


xi = xi(~q)

yi = yi(~q)

zi = zi(~q)

=⇒



ẋi =
∑n

j=1
∂xi
∂qj
q̇j = ẋi(~q, ~̇q)

ẏi =
∑n

j=1
∂yi
∂qj
q̇j = ẏi(~q, ~̇q)

żi =
∑n

j=1
∂zi
∂qj
q̇j = żi(~q, ~̇q)

Lagrange’s Equations of Motion for a Conservative System

Hamilton’s principle:

δJ = δ

∫ t2

t1

L(qi, q̇i)dt =

∫ t2

t1

δLdt = 0

=

∫ t2

t1

∑
i

[
∂L
∂qi

(δqi) +
∂L
∂q̇i

(δq̇i)

]
dt = 0
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We integrate the second term by parts. Let u = ∂L
∂q̇i

and dv = d(∂qi)
dt

:

δ(q̇i) =
d

dt
(δqi) =⇒

∫ t2

t1

∂L
∂q̇i

d(∂qi)

dt
dt =

∂L
∂q̇i

(δqi)
∣∣∣t2
t1
−
∫ t2

t1

d

dt

(
∂L
∂qi

)
(δqi)dt

and since

∂L
∂q̇i

(δqi)
∣∣∣t2
t1

= 0

we have that

δJ =

∫ t2

t1

dt
∑
i

[(
∂L
∂qi

)
− d

dt

(
∂L
∂q̇i

)]
(δqi) = 0

(δqi) is completely arbitrary; the only requirement is that the endpoints are fixed. Con-
sequently, the only way δJ can vanish, given the infinite varieties of (δq)i is that each
component variable, i.e,: (

∂L
∂qi

)
− d

dt

(
∂L
∂q̇i

)
= 0 i = 1, ..., n

(Conservative, subject only to holonomic constraints).

n Lagrangian equations of motion for n degrees of freedom.

Applications

(i): Find suitable set of independent general coordinates qi

(ii): Find Cartesian coordinates as one of general coordinates: xi(~q), yi(~q), zi(~q)

(iii): Find T and V as a function of ~q, ~qi; Find L(~q, ~̇q) = T − V

(iv): Use ∂L
∂qi
− d

dt
( dL
dq̇i

) = 0 to find the equations of motion.
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Example 1: Harmonic Oscillator

L(x, ẋ) = T − V =
1

2
mẋ2 − 1

2
kx2

∂L
∂x

= −kx
∂L
∂ẋ

= mẋ

}
∂L
∂qi
− d

dt

(
dL
dq̇i

)
= 0 =⇒ −kx− d

dt
(mẋ = 0)

=⇒ −kx−mẍ = 0

=⇒ −kx = mẍ

Example 2: Particle in a Central Force Field

x = r cos θ =⇒ ẋ = ṙ cos θ − rθ̇ sin θ

y = r sin θ =⇒ ẏ = ṙ sin θ + rθ̇ cos θ

z = 0 =⇒ ż = 0
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T =
1

2
m(ẋ2 + ẏ2)

=
1

2

[
ṙ2 cos2 θ − 2rṙθ̇ sin θ cos θ + r2θ̇2 sin2 θ + ṙ2 sin2 θ + 2rṙθ̇ sin θ cos θ + r2θ̇2 cos2 θ

]

=
1

2
m[r2θ̇2 + ṙ2] , and V = V (r)

and hence we have

L =
1

2
m[r2θ̇2 + ṙ2]− V (r)

Two equations of motion:

(i): For r

∂L
∂r
− d

dt

(
∂L
∂ṙ

)
= 0

mθ̇2r − ∂V

∂r
− d

dt
(mṙ) = 0

mr̈ = −∂V
∂r

+mrθ̇2

Note that −∂V/∂r is the central force and
mrθ̇2 is the centrifugal force.

(ii): For θ

∂L
∂θ
− d

dt

(
∂L
∂θ̇

)
= 0

0− d

dt
(mr2θ̇) = 0

d

dt
(mr2θ̇) = 0

Note: Conservation law becomes “auto-
matic”! =⇒ we get a “constant of motion”
for each qi that does not appear explicitly in
L.
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Example 3: Atwood’s Machine

Pulley has moment of inertia I; hence we have two Cartesian coordinates plus the constraint
x1 + πa+ x2 = l (l is the length of the cord).

Use x = x1 as coordinate:

T =
1

2
m1ẋ

2 +
1

2
I

(
ẋ

a

)2

+
1

2
m2ẋ

2

Note that (ẋ/a)2 = θ̇2. We also have that

V = −m1gx1 −m2gx2 = −m1gx−m2g(l − πa− x)

V = − (m1 −m2)gx−m2g(l − πa)

Hence

L =
1

2
(m1 +m2)ẋ

2 +
1

2

(
I

a2

)
ẋ2 + (m1 −m2)gx+m2g(l − πa)

Now

d

dt

(
∂L
∂ẋ

)
=

(
∂L
∂x

)
=⇒

(
m1 +m2 +

I

a2

)
ẍ = (m1 −m2)g

=⇒ ẍ =

(
m1 −m2

m1 +m2 + I
a2

)
g

We see here that a massive pulley reduces acceleration.
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Example 4: The Double Atwood Machine (neglect pulley radii)

Let xi denote the distance to the mass mi from the upper pulley and let xp denote the
distance to the pulley which moves (the lower pulley). Let l be the length of the upper rope
and l′ be the length of the lower rope. Note that

x1 = x

x2 = (l − x) + x′

x3 = (l − x) + (l′ − x′)

We thus have the following constraints:

x1 + xp = l

(x2 − xp) + (x3 − xp) = l′ =⇒ x2 + x3 − 2(l − x1) = l′

Now

T =
1

2
m1ẋ

2 +
1

2
m2(−ẋ+ ẋ′)2 +

1

2
m3(−ẋ− ẋ′)2

V = −m1gx−m2g(l − x+ x′)−m3g(l − x+ l′ − x′)
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=⇒ L = T − V =
1

2
m1ẋ

2 +
1

2
m2(ẋ

2 − 2ẋ′ẋ+ ẋ′2) +
1

2
m3(ẋ

2 + 2ẋẋ′ + ẋ′2)

+(m1 −m2 −m3)gx+ (m2 −m3)gx
′ + constant

(i)

d

dt

(
∂L
∂ẋ

)
=

(
∂L
∂x

)
(m1 +m2 +m3)ẍ+ (m3 −m2)ẍ

′ = (m1 −m2 −m3)g

(ii)

d

dt

(
∂L
∂ẋ′

)
=

(
∂L
∂x′

)
(m2 +m3)ẍ

′ + (m3 −m2)ẍ = (m2 −m3)g

We obtain the accelerations by solving this system of two equations and two unknowns (ẍ
and ẍ′)

=⇒ ẍ = −g
[

(m3 −m2)
2 + (m2 +m3)(m1 −m2 −m3)

(m3 −m2)2 − (m2 +m3)(m1 +m2 +m3)

]

In the homework, be wary of the “double-double” Atwood machine (m1 is replaced by a
pulley which itself holds two masses).
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Example 5: Particle Sliding on a movable inclined plane

Let ~V be the velocity of the inclined plane and ~v be the velocity of the block. Then

~V = îẋ

~v = îẋ+ êθẋ
′

where êθ = (cos θ,− sin θ). We thus have

T =
1

2
MV 2 +

1

2
mv2 =

1

2
Mẋ2 +

1

2
m(̂iẋ+ êθẋ

′)2

=
1

2
Mẋ2 +

1

2
m
[
(ẋ+ cos θẋ′)2 + (sin θẋ′)2

]

=
1

2
Mẋ2 +

1

2
m
[
ẋ2 + 2 cos θẋẋ′ + cos2 θẋ′2 + sin2 θẋ′2

]

=
1

2
Mẋ2 +

1

2
m
[
ẋ2 + 2 cos θẋẋ′ + ẋ′2

]
and

V = mg[L sin θ − x′ sin θ] = (constant)−mg sin θx′

where L is the length of the plane. Hence

L = T − V =
1

2
(M +m)ẋ2 +m cos θẋẋ′ +

1

2
mẋ′2 +mg sin θx′
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Equations of Motion:

(i)

d

dt

(
∂L
∂ẋ

)
=

(
∂L
∂x

)
=⇒ d

dt
((M +m)ẋ+m cos θẋ′) = 0

(since L is independent of x). Note that conservation of momentum comes out automatically.

(ii)

d

dt

(
∂L
∂ẋ′

)
=

(
∂L
∂x′

)
=⇒ d

dt
(m cos θẋ+mẋ′) = mg sin θ

We now have two equations and two unknowns:

{
(M +m)ẍ+m cos θẍ′ = 0

cos θẍ+ ẍ′ = g sin θ

Solving for ẍ and ẍ′ yields

ẍ′ =
g sin θ

1− m
m+M

cos2 θ
ẍ = − g sin θ cos θ

m+M
m
− cos2 θ
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