Lecture 28: Generalized Momenta and Ignorable Coordinates

Free Particle : $\left\{\begin{array}{l}T=\frac{1}{2} m \dot{x}^{2} \\ V=0\end{array} \Longrightarrow \mathcal{L}=\frac{1}{2} m \dot{x}^{2}\right.$

Note that \mathcal{L} does not depend on x

$$
\begin{gathered}
\Longrightarrow \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)=\left(\frac{\partial \mathcal{L}}{\partial x}\right)=0 \\
\Longrightarrow \quad \frac{d}{d t}(m \dot{x})=0
\end{gathered}
$$

This is the conservation of momentum law! Let's generalize this idea. For each generalized coordinate, the generalized momentum or canonical momentum is defined as

$$
p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}
$$

$$
\text { Lagrange's equation becomes } \dot{p}_{i}=\frac{\partial \mathcal{L}}{\partial q_{i}}
$$

If \mathcal{L} does not depend explicitly on q_{i} (it's ok to depend on \dot{q}_{i}) then

$$
\dot{p}_{i}=0 \Longrightarrow p_{i}=\text { constant "conservation law" }
$$

We say that this missing coordinate is "ignorable" because we may use the $p_{i}=$ constant equation to eliminate it.

Example: Pendulum Attached to a Movable Support

$$
\mathcal{L}=\frac{1}{2}(m+M) \dot{X}^{2}+\frac{1}{2} m\left(r^{2} \dot{\theta}^{2}+2 \dot{X} r \dot{\theta} \cos \theta\right)+m g r \cos \theta
$$

Note that $\dot{p}_{X}=\partial \mathcal{L} / d X=0$ and hence X is "ignorable"!

$$
p_{X}=\frac{\partial \mathcal{L}}{\partial \dot{X}}=[(M+m \dot{x}+m r \dot{\theta} \cos \theta)]=\text { constant }
$$

That turns out to be simply the total linear momentum along x !

$$
\begin{gathered}
\dot{p}_{\theta}=\frac{\partial \mathcal{L}}{\partial \theta}=-m \dot{X} r \dot{\theta} \sin \theta-m g r \sin \theta=-m r(\dot{X} \dot{\theta}+g) \sin \theta \\
p_{\theta}=\frac{\partial \mathcal{L}}{\partial \dot{\theta}}=m r^{2} \dot{\theta}+m r \dot{X} \cos \theta \\
\dot{p}_{\theta}=m r^{2} \ddot{\theta}+m r \ddot{X} \cos \theta-m r \dot{X} \dot{\theta} \sin \theta=-m r \dot{X} \dot{\theta} \sin \theta-m r g \sin \theta
\end{gathered}
$$

The final equality above comes from relating the two \dot{p}_{θ} equations. It follows that

$$
\ddot{\theta}+\frac{\ddot{X}}{r} \cos \theta+\frac{g}{r} \sin \theta=0
$$

Check Limits: Assume X is fixed: $X=\dot{X}=\ddot{X}=0$

$$
\Longrightarrow \quad \ddot{\theta}+\frac{g}{r} \sin \theta=0
$$

Can $\dot{\theta}=\ddot{\theta}=0$? If so, then

$$
\frac{\ddot{X}}{r} \cos \theta=-\frac{g}{r} \sin \theta \quad \Longrightarrow \quad \tan \theta=-\frac{\ddot{X}}{g}
$$

Hamiltonian Function and Hamilton's Equations

Consider the function

$$
H=\sum_{i} \dot{q}_{i} p_{i}-\mathcal{L}
$$

(Recall that $\left.p_{i}=\partial \mathcal{L} / \partial \dot{q}_{i}\right)$. Let's assume the system is conservative and $V=V\left(q_{i}\right)$ only. Let's also assume that $T\left(\dot{q}_{i}\right)$ is a quadratic function on \dot{q}_{i}, i.e

$$
T\left(\dot{q}_{i}\right)=\frac{1}{2} \sum_{i, j} \alpha_{i j} \dot{q}_{i} \dot{q}_{j}
$$

In this case $T\left(\dot{q}_{i}\right)$ satisfies the "homogeneous" property,

$$
\sum_{k} \dot{q}_{k} \frac{\partial T}{\partial \dot{q}_{k}}=2 T
$$

Check:

$$
\begin{aligned}
\sum_{k} \dot{q}_{k} \frac{\partial T}{\partial \dot{q}_{k}} & =\sum_{k} \dot{q}_{k} \frac{1}{2}\left(\sum_{j} \alpha_{k j} \dot{q}_{j}+\sum_{i} \alpha_{i k} \dot{q}_{i}\right) \\
& =\frac{1}{2} \sum_{k, j} \alpha_{k j} \dot{q}_{k} \dot{q}_{j}+\frac{1}{2} \sum_{k, i} \alpha_{i k} \dot{q}_{i} \dot{q}_{k} \\
& =2 T
\end{aligned}
$$

Therefore

$$
H=\sum_{i} \dot{q}_{i} \frac{\partial T}{\partial \dot{q}_{i}}-(T-V)=2 T-T+V=T+V
$$

H is the total energy! (Only when T satisfies the "homogeneous" property).
Suppose we take the definition of generalized momenta $p_{k}=\partial \mathcal{L} / \partial \dot{q}_{k}$ and use it to write

$$
\dot{q}_{k}=\dot{q}_{k}\left(p_{k}, q_{k}\right)
$$

This allows us to write

$$
H=H\left(p_{i}, q_{i}\right)=\sum_{i} p_{i} \dot{q}_{i}-\mathcal{L}
$$

Note: in general, H is not necessarily the energy (only when $\sum_{k} \dot{q}_{k} \frac{\partial T}{\partial \dot{q}_{k}}=2 T$). Now

$$
\begin{gathered}
\delta H=\sum_{i}\left[p_{i} \delta\left(\dot{q}_{i}\right)+\dot{q}_{i} \delta p_{i}-\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta\left(\dot{q}_{i}\right)-\frac{\partial \mathcal{L}}{\partial q_{i}} \delta q_{i}\right] \\
=\sum_{i}\left[\dot{q}_{i} \delta p_{i}-\dot{p}_{i} \delta q_{i}\right]
\end{gathered}
$$

But we can also write

$$
\begin{gathered}
\delta H=\sum_{i}\left[\frac{\partial H}{\partial p_{i}} \delta p_{i}+\frac{\partial H}{\partial q_{i}} \delta q_{i}\right] \\
\Longrightarrow\left\{\begin{array}{l}
\frac{\partial H}{\partial p_{i}}=\dot{q}_{i} \\
\frac{\partial H}{\partial q_{i}}=-\dot{p}_{i}
\end{array} \quad\right. \text { Hamilton's Equations of Motion }
\end{gathered}
$$

These correspond to $2 n$ 1st order differential equations.

Example: Harmonic Oscillator

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2} \quad, \quad p_{x}=\frac{\partial \mathcal{L}}{\partial \dot{x}}=m \dot{x} \\
H=\dot{x} p_{x}-\mathcal{L}=\frac{p_{x}}{m} p_{x}-\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}=\frac{p_{x}{ }^{2}}{2 m}+\frac{1}{2} k x^{2} \\
\left\{\begin{array} { l }
{ \frac { \partial H } { \partial p _ { i } } = \dot { x } } \\
{ \frac { \partial H } { \partial q _ { i } } = - \dot { p } _ { x } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array} { l }
{ \frac { p _ { x } } { m } = \dot { x } } \\
{ k x = - \dot { p } _ { x } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
p_{x}=m \dot{x} \\
\dot{p}_{x}=-k x
\end{array} \quad \Longrightarrow \quad-k x=m \ddot{x}\right.\right.\right.
\end{gathered}
$$

