Lecture 29

Generalized Forces

$$
p_{i}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \quad \Longrightarrow \quad \dot{p}_{i}=\frac{\partial \mathcal{L}}{\partial q_{i}}
$$

where p_{i} is the generalized momentum and $\partial \mathcal{L} / \partial q_{i}$ is the general force. The second equation is Lagrange's equation.

$$
\begin{array}{ll}
\text { Particles in 1D: } & \mathcal{L}=\frac{1}{2} m \dot{x}^{2}-V(x) \\
& F_{x}=\frac{\partial \mathcal{L}}{\partial x}=-\frac{\partial V}{\partial x}
\end{array}
$$

Pendulum:

$$
\begin{aligned}
& \left.\mathcal{L}=\frac{1}{2} m(a \dot{\theta})^{2}-m g a(1-\cos \theta)\right) \\
& F_{\theta}=\frac{\partial \mathcal{L}}{\partial \theta}=-m g a \sin \theta=\text { Torque } \\
& p_{\theta}=\frac{\partial \mathcal{L}}{\partial \dot{\theta}}=m a^{2} \dot{\theta}=I \omega=\text { Angular Momentum } \\
& \dot{p}_{\theta}=F_{\theta} \quad \Longrightarrow \quad I \alpha=\tau
\end{aligned}
$$

Equilibrium and Stability

x_{1} and x_{2} are equilibrium points since $\partial V /\left.\partial x\right|_{x=x_{1}, x_{2}}=0$
x_{1} is unstable since $\partial^{2} V /\left.\partial x^{2}\right|_{x=x_{1}}<0$
x_{2} is stable since $\partial^{2} V /\left.\partial x^{2}\right|_{x=x_{2}}>0$

We wish to generalize to a single coordinate q :

$$
V(q)=V_{0}+V_{0}^{\prime} q+\frac{1}{2} V_{0}^{\prime \prime} q^{2}+\ldots+\frac{1}{n!} V_{0}^{(n)} q^{n}+\ldots
$$

where $V_{0}=V(q=0)$ and $V_{0}^{\prime}=d V /\left.d q\right|_{q=0}$ and so on. If $q=0$ is a point of equilibrium, $V_{0}^{\prime}=0$. (If it is not, we can define $q^{\prime}=q-q_{0}$ where q_{0} is the equilibrium point and repeat the argument).

Consequently, for small q we may approximate (Set $V_{0}=0$)

$$
\begin{gathered}
\qquad V(q) \approx \frac{1}{2} V_{0}^{\prime \prime} q^{2} \\
\text { Provided } V_{0}^{\prime \prime} \neq 0 \quad \begin{cases}V_{0}^{\prime \prime}>0 & \text { stable } \\
V_{0}^{\prime \prime}<0 & \text { unstable }\end{cases}
\end{gathered}
$$

What if $V_{0}^{\prime \prime}=0$? Then check the 1st non-vanishing $V_{0}^{(n)}$. If n is odd, e.g.,

$$
V(q)=\frac{1}{3!} V_{0}^{\prime \prime \prime} q^{3} \quad F(q)=-\frac{\partial V}{\partial q}=-\frac{1}{2!} V_{0}^{\prime \prime \prime} q^{2} \quad \Longrightarrow \quad \text { unstable }
$$

If m is even and $V_{0}^{(n)}>0$, then the particle is stable.
For n degrees of freedom, assume $q_{1}=q_{2}=\ldots=q_{n}=0$ is the equilibrium point; expand $V(\vec{q})$:

$$
V=V\left(q_{1}, q_{2}, \ldots, q_{n}\right)=\frac{1}{2}\left(k_{11} q_{1}^{2}+k_{12} q_{1} q_{2}+k_{21} q_{2} q_{1}+k_{2} 2 q_{2}^{2}+\ldots\right)
$$

where $k_{i j}=\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}$. The equation above is a "quadratic form."
\vec{q} is stable if the quadratic form is positive definite, i.e. $V=0$ or $V>0$ for all \vec{q}. We may show this is true if

$$
k_{11}>0 \quad, \quad k_{22}>0 \quad \text { and } \quad\left|\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right|>0 \quad, \quad \text { and so on }
$$

Example: Stability of round-bottomed objects

O is the center of curvature. Note that $h=a-(a-b) \cos \theta$. We have that

$$
\begin{gathered}
V=m g h=m g a-m g(a-b) \cos \theta \\
F=-\frac{\partial V}{\partial \theta}=-m g(a-b) \sin \theta \quad \Longrightarrow \quad \theta=0 \quad \text { is an equilibrium point } \\
V_{0}^{\prime \prime}=\left.\frac{\partial^{2} V}{\partial \theta^{2}}\right|_{\theta=0}=\left.m g(a-b) \cos \theta\right|_{\theta=0}=m g(a-b) \quad \Longrightarrow \quad\left\{\begin{array}{lll}
a>b & \Longrightarrow & \text { stable } \\
a<b & \Longrightarrow & \text { unstable } \\
a=b & \Longrightarrow & \text { neutral }
\end{array}\right.
\end{gathered}
$$

Small Oscillations: Suppose we have stability and $a>b$. Then for $\theta \ll 1$

$$
V(\theta) \approx \frac{1}{2} V_{0}^{\prime \prime} \theta^{2}=\frac{1}{2} m g(a-b) \theta^{2}
$$

$T=$?. Assume the object rolls without slipping $\Longrightarrow v_{c m}=b \dot{\theta}$ for $\theta \ll 1$. Then

$$
T=\frac{1}{2} m(b \dot{\theta})^{2}+\frac{1}{2} I_{c m} \dot{\theta}^{2}
$$

It follows that

$$
\begin{gathered}
\mathcal{L}=T-V=\frac{1}{2} m b^{2}\left[1+\frac{I_{c m}}{m b^{2}}\right] \dot{\theta}^{2}-\frac{1}{2} m g(a-b) \theta^{2} \\
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)=\frac{\partial \mathcal{L}}{\partial \theta} \quad \Longrightarrow \quad m b^{2}\left(1+\frac{I_{c m}}{m b^{2}}\right) \ddot{\theta}=-m g(a-b) \theta
\end{gathered}
$$

We call $m b^{2}\left(1+\frac{I_{c m}}{m b^{2}}\right)$ the $m_{\text {eff }}$. Recall that $m g(a-b)=V_{0}^{\prime \prime}$. Our differential equation becomes

$$
\ddot{\theta}+\frac{V_{0}^{\prime \prime}}{m_{e f f}} \theta=0
$$

It follows that $\omega_{o s c}=\sqrt{V_{0}^{\prime \prime} / m_{e f f}}$ is the frequency of "small oscillation."

Coupled Harmonic Oscillators: Normal Modes or Collective Normal Modes of Oscillation

(i): Suppose $x_{1}(t=0)>0$ amd $x_{2}(0)=0 . m_{1}$ will oscillate, and since it is coupled to the second mass, part of its energy will be transfered to m_{2}. Energy will flow back and forth! Each individual mass cannot oscillate alone!
(ii): Consider displacing $x_{1}=x_{2}=x$. The spring K^{\prime} is not compressed/stretched, hence the restoring force is $2 K x$. Since the total mass is $2 m$, the frequency is

$$
\omega_{1}=\sqrt{\frac{2 K}{2 m}}=\sqrt{\frac{K}{m}}
$$

This distance remains fixed

This is called a "normal mode" or "collective mode."
(iii): Another initial condition where $x_{1}=-x_{2}$ is called "breathing mode." In this situation, the center of the of the middle spring remains fixed while m_{1} and m_{2} move in and out together.

This point is not moving

Find frequency? Restoring force on each mass is $F=-k x_{1}-2 K^{\prime} x_{1}=-\left(K+2 K^{\prime}\right) x$. Note that $2 K$ is the $K_{\text {eff }}$ of the middle spring cut in half (we are exploiting symmetry here). Hence

$$
\omega_{2}=\sqrt{\frac{K+2 K^{\prime}}{m}}
$$

All possible motions are linear combinations of ω_{1} and ω_{2}.

Method of Solution

$$
\mathcal{L}=\frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} m \dot{x}_{2}^{2}-\frac{1}{2} K x_{1}^{2}-\frac{1}{2} K^{\prime}\left(x_{1}-x_{2}\right)^{2}-\frac{1}{2} k x_{2}^{2}
$$

Using $\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\right)=\frac{\partial \mathcal{L}}{\partial q}$ gives us

$$
\begin{gathered}
m \ddot{x}_{1}=-K x_{1}-K^{\prime}\left(x_{1}-x_{2}\right) \\
m \ddot{x}_{2}=K^{\prime}\left(x_{1}-x_{2}\right)-K x_{2} \\
\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right)\binom{\ddot{x_{1}}}{x_{2}}=-\left(\begin{array}{cc}
+\left(K+K^{\prime}\right) & -K \\
-K^{\prime} & \left(K+K^{\prime}\right)
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{gathered}
$$

or, in matrix form, $\mathbb{M} \cdot \ddot{\vec{q}}=-\mathbb{K} \cdot \vec{q}$. We search for "normal mode solutions" of the form $\vec{q}=\vec{a} \cos (\omega t-\delta)$. Since $\ddot{\vec{q}}=-\omega^{2} \vec{q}:$

$$
\begin{aligned}
-\omega^{2} \mathbb{M} \cdot \vec{q} & =-\mathbb{K} \cdot q \quad, \quad \text { divide by } \cos (\omega t-\delta) \\
& \Longrightarrow \quad\left(\mathbb{K}-\omega^{2} \mathbb{M}\right) \cdot \vec{a}=0
\end{aligned}
$$

This is a homogeneous system, non-zero solutions exist only when $\operatorname{det}\left(\mathbb{K}-\omega^{2} \mathbb{M}\right)=0$. If \mathbb{M} is diagonal, our problem is to find the eigenvalues ω^{2} and eigenvectors \vec{a} of \mathbb{K}.

$$
\begin{aligned}
& \left|\begin{array}{cc}
\begin{array}{c}
\left(K+K^{\prime}\right)-m \omega^{2} \\
-K^{\prime}
\end{array} & -K^{\prime} \\
\left(K+K^{\prime}\right)-m \omega^{2}
\end{array}\right|=0 \Longrightarrow\left[\left(K+K^{\prime}\right)-m \omega^{2}\right]^{2}-K^{\prime 2}=0 \\
& \left(K+K^{\prime}\right)-m \omega^{2}= \pm K \quad \Longrightarrow \quad \omega^{2}=\frac{K+K^{\prime} \pm K^{\prime}}{m}=\left\{\begin{array}{l}
\omega_{-}=\omega_{1}=\frac{k}{m} \\
\omega_{+}=\omega_{2}=\frac{2 K^{\prime}+K}{m}
\end{array}\right.
\end{aligned}
$$

Eigenvectors \vec{a} ? Plug $w_{1}^{2}=k / m$:

$$
\left.\begin{array}{c}
\left(\begin{array}{cc}
\left(K+K^{\prime}\right)-m \omega_{1}^{2} & -K^{\prime} \\
-K^{\prime}
\end{array}\left(K+K^{\prime}\right)-m \omega_{1}^{2}\right.
\end{array}\right)\binom{a_{11}}{a_{21}}=\binom{0}{0} ~\left(\begin{array}{l}
\text { (}
\end{array} \begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)\binom{a_{11}}{a_{21}}=\binom{0}{0} .
$$

Similarly with $\omega_{2}^{2}=\left(2 K^{\prime}+K\right) / m$ we get

$$
\left.\begin{array}{c}
\begin{array}{c}
\left(K+K^{\prime}\right)-\left(2 K^{\prime}+K\right)^{\prime} \\
-K^{\prime}
\end{array} \\
\left(K+K^{\prime}\right)-\left(2 K^{\prime}+K\right)
\end{array}\right)\binom{a_{11}}{a_{21}}=\binom{0}{0}
$$

Therefore the general solution is given by

$$
\vec{q}=\binom{x_{1}}{x_{2}}=A \cos \left(\omega_{1} t+\delta_{1}\right)\binom{1}{1}+B \cos \left(\omega_{2} t+\delta_{2}\right)\binom{1}{1}
$$

Two Normal Modes: 4 constants of motion, determined by the initial conditions $x_{1}(0), \dot{x}_{1}(0), x_{2}(0), \dot{x}_{2}(0)$

Another simple way to solve the problem is to transform to normal coordinates:

$$
\left\{\begin{array}{l}
\ddot{x}_{1}+\left(\frac{K+K^{\prime}}{m}\right) x_{1}-\left(\frac{K^{\prime}}{m}\right) x_{2}=0 \tag{1}\\
\ddot{x}_{2}+\left(\frac{K+K^{\prime}}{m}\right) x_{2}-\left(\frac{K^{\prime}}{m}\right) x_{1}=0
\end{array}\right.
$$

Add and subtract:

$$
\begin{aligned}
& (1)+(2) \quad \Longrightarrow \quad\left(x_{1} \ddot{+} x_{2}\right)+\left[\left(\frac{K+K^{\prime}}{m}\right)-\frac{K^{\prime}}{m}\right]\left(x_{1}+x_{2}\right)=0 \\
& (1)-(2) \quad \Longrightarrow \quad\left(x_{1} \ddot{+} x_{2}\right)+\left[\left(\frac{K+K^{\prime}}{m}\right)+\frac{K^{\prime}}{m}\right]\left(x_{1}+x_{2}\right)=0
\end{aligned}
$$

Therefore when transforming to $Q_{1}=x_{1}+x_{2}$ and $Q_{2}=x_{1}-x_{2}$ we get

$$
\left\{\begin{array}{l}
\ddot{Q}_{1}+\frac{K}{m} Q_{1}=0 \\
\ddot{Q}_{2}+\frac{2 K^{\prime}+K}{m} Q_{2}=0
\end{array}\right.
$$

These are known as decoupled equations.

$$
\binom{Q_{1}}{Q_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \quad \Longrightarrow \quad \vec{x}=\mathbb{O} \cdot \vec{Q}
$$

Actually we may show that this transform matrix equals

$$
\mathbb{O}=\left(\vec{a}_{1} \vec{a}_{2}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Proof: $\vec{a}_{1}=\mathbb{O} \cdot\binom{1}{0}$ and $\vec{a}_{2}=\mathbb{O} \cdot\binom{0}{1}$ where

$$
\begin{aligned}
\mathbb{M}^{-1} \cdot \mathbb{K} \cdot \vec{a}_{1} & =\frac{k}{m} \vec{a}_{1} \quad \Longrightarrow \quad \mathbb{M}^{-1} \cdot \mathbb{K} \cdot \mathbb{O} \cdot\binom{1}{0}=\frac{k}{m} \mathbb{O} \cdot\binom{1}{0} \\
& \Longrightarrow\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\mathbb{O}^{-1}(\mathbb{M} \cdot \mathbb{K}) \mathbb{O}\right)\binom{1}{0}=\frac{k}{m} \\
& \Longrightarrow\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\mathbb{O}^{-1}(\mathbb{M} \cdot \mathbb{K}) \mathbb{O}\right)\binom{1}{0}=0
\end{aligned}
$$

The same goes for \vec{a}_{2}. Therefore $\mathbb{O}=\left(\vec{a}_{1} \vec{a}_{2}\right)$

Now

$$
\begin{gathered}
\mathbb{M} \cdot \ddot{\vec{q}}=-\mathbb{K} \cdot \vec{q} \Longrightarrow \quad \ddot{\vec{q}}=-\mathbb{M}^{-1} \cdot \mathbb{K} \cdot \vec{q} \\
\Longrightarrow \quad\left(\mathbb{O}^{-1} \cdot \vec{q}\right)=-\mathbb{O}^{-1} \cdot\left(\mathbb{M}^{-1} \cdot \mathbb{K}\right) \cdot \mathbb{O} \cdot\left(\mathbb{O}^{-1} \cdot \vec{q}\right) \\
\Longrightarrow \quad\binom{\ddot{Q}_{1}}{\ddot{Q}_{2}}=-\left(\begin{array}{cc}
k / m & 0 \\
0 & \left(2 K^{\prime}+K\right) / m
\end{array}\right) \cdot\binom{Q_{1}}{Q_{2}}
\end{gathered}
$$

The reference system of the normal coordinates "decouples" the problem.

