# MIDTERM EXAMINATION 

## October $3^{\text {rd }} 2014$

## CLASSICAL MECHANICS: I (PHYS 321A A01)

INSTRUCTOR: R. DE SOUSA

DURATION: 45 MINUTES
TOTAL CREDIT: 30

NAME: $\qquad$

STUDENT NUMBER: V00

## INSTRUCTIONS:

> Write your answers into the space provided for each problem. Clearly explain your reasoning. If you need more space, please use the back of the page.
$>$ This exam has a total of 6 pages including this cover page; there are 3 problems.
$>$ Students must count the number of pages and report any discrepancy to the invigilator.
$>$ This examination must be answered on the question paper.
$>$ Students are only allowed one formula sheet, handwritten on both sides of an $8.5 \times 11$ inch page, and one calculator: the Sharp EL-510R.
$>$ Write your name and student number in the space provided at the top of this page.

## 1) Potential energies and force fields.

a) (/5)The interaction between nucleons (protons and neutrons) may be represented by the Yukawa potential,

$$
U(r)=-U_{0}\left(\frac{r_{0}}{r}\right) \mathrm{e}^{-\left(\frac{r}{r_{0}}\right)}
$$

Here $r_{0}$ and $U_{0}$ are constants and $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Find the force field associated to $U(r)$.

Hint: $\frac{\partial r}{\partial x}=\frac{x}{r}, \quad \frac{\partial r}{\partial y}=\frac{y}{r}, \quad \frac{\partial r}{\partial z}=\frac{z}{r}$.
b) (/5) Consider the force field

$$
\vec{F}=\left(x^{2}-y^{2}\right) \hat{\mathbf{i}}-2 x y \hat{\mathbf{j}}
$$

Is this force field conservative? Prove your answer mathematically. If your answer is yes, find the corresponding potential energy.

Hint: To find the potential energy, you will need to integrate over a particular path. Find a simple path to integrate.

## 2) Anisotropic harmonic oscillator (in two dimensions).

Consider the two dimensional harmonic oscillator with potential energy function,

$$
V(x, y)=\frac{1}{2} m \omega_{1}^{2} x^{2}+\frac{1}{2} m \omega_{2}^{2} y^{2}
$$

a) (/5) Write down the equations of motion, separate them into $x, y$ coordinates and solve them for $x(t)$ and $y(t)$.
b) (/5) Assume $m=1, \omega_{i}=1, \omega_{2}=2$, and initial conditions $x_{0}=0, y_{0}=1$, and $\dot{x}_{0}=1$, $\dot{y}_{0}=0$. Draw an orbit in the xy plane representing this motion.

## 3) Projectile motion with air resistance linear in $v$.

A person is at the edge of the abyss shown in the figure. $\mathrm{He} /$ she throws a rock with mass m and velocity $\vec{\nu}_{0}=v_{0} \hat{i}$ (along the horizontal, see figure). Assume that the rock is subject to air resistance that is linear in $\mathrm{v}, \vec{F}_{\text {air }}=-m \gamma \vec{v}$.
a) (/5) Write down the equation of motion for the projectile and find its position as a function of time assuming the origin of the coordinate system shown.
b) (/5) Assuming $H \gg g / \gamma^{2}$, find the value of initial velocity $\mathrm{v}_{0}$ required for the rock to hit the target shown in the picture. Draw the trajectory.


PHYS 321A (Classical Mechanics: I) Page 6 of 6

