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Direct imaging of the phase interference in the Aharonov-Bohm
experiment with an holographic electron microscope

A. Tonomura et al, Phys. Rev. Lett. 48, 1443 (1982)
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Akira Tonomura, Tsuyoshi Matsuda, Ryo Suzuki, Akira Fukuhara, Nobuyuki Osakabe,
Hiroshi Umezaki, Junji Endo, Kohsei Shinagawa, Yutaka Sugita, and Hideo Fujiwara
Central Research Laboratovy, Hitachi Ltd., Kokubunji, Tokyo 185, Japan
(Received 16 February 1982)

Interferogram of electron's phase for an electron beam going through a
toroidal magnet (beam direction coming out of page). Observation of
interference pattern in the toroid's shadow proves the A-B effect!
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Aharonov-Bohm effect in devices: The SQUID
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* In a superconductor, electrons act as a "macroscopic
quantum state” 1) = e¢'* A remarkable consequence is the

Josephson effect. _
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The superconducting quantum interference

device (SQUID)
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SQUID as a qubit
« Potential energy of a JJ:
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« So we can think of gb as “position”.
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« Also, from @ =cCv = (26) Zf think of charge as “momentum”.
Quantum theory: [g& Q} 9ei= ()= 262%
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SQUID as a qubit: "Artificial spin”

Makhlin, Schon, Shnirman, Rev. Mod. Phys. 2001
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The SQUID advantage: Inductive coupling

m P m o, m s

H = M1 Po + MozgPo®3 + M34P3Py + - -

More complicated circuit allows each M;; to be"programmable”:
D-Wave's chip (128 and 512 qubits)




D-Wave's approach to QC

« Their chip realizes a programmable Ising model
Ho = — E Jii8i2Sj2 — E hiSi,
1,9 1

With each SQUID qubit an artificial Ising spin s.,=0, 1.

 Finding set of {s,} that minimizes energy is a NP-hard
problem — no polynomial time algorithm exists (i.e. current

algorithms take t ~ exp(size) to find answer).

« Commercial value of solving this problem: All NP-hard
problems map on each other — particularly, the family of
travelling salesman optimization problems - really
important in business (i.e. optimal way of loading trucks,
etc).



Quantum annealing: Using quantum mechanics
to find the ground state
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o Start with I' > J;;, h;, with qubits reset to known ground state:

(0)) = [T;2, (10) +[1))

e Decrease I' slowly to zero

If 7> h/gap,
system will end up in ground state!




Quantum annealing versus classical annealing?
 Classical annealing: Start with T=o00, reduce T slowly to zero

« Quantum annealing: Take a short cut by tunneling
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Does it work? Comparison of D-Wave's 128
qubit chip with a simulation of quantum
annealing on a classical computer
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S. Boixo et al, arXiv:1304.4595 [quant-ph]



Why is quantum computing powerful?

« The qubit can exist in a superposition of its two states

¥) = a|0) + B|1)
Consider N qubits
) = (a1]0) + B11)) (@2[0) + B2[1)) - - - (an|0) 4+ B (1))
= (a1 ---an)[00---0) + (a1 B2 - - -an)|[010---0) + - --
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Processing 2N states!

— ai|output 1) 4+ as|output 2) + - - - agn |output 2N>

“Quantum parallelism”: 2N inputs processed simultaneously. However,
when we read out the answer only one output survives.

Some problems such as factorization, searching
disordered databases, etc can be solved much faster in QC




