Department Home Contact Us
   

Physics 507 B: Solid State Physics II, Spring 2011


Professor

Rogério de Sousa

Lectures


Tuesdays  1:30 - 2:50 pm, Elliott 161

Thursdays 1:00 - 2:20 pm, CLE C316 (Clearihue building)

Office hours

My office is located at Elliott 117.   You are welcome to see me anytime the door is open.


Textbooks


This course is the continuation of P507A, Solid State Physics I.  The core of the course is given by Chapters 6-11 of

  • D.W. Snoke, "Solid State Physics: Essential Concepts" (Addison-Wesley, San Francisco, USA 2009).  

This textbook will be complemented by other books:

  • M. Tinkham, "Group theory and quantum mechanics" and H. Georgi, "Lie Algebras in Particle Physics" for the first part of the course.

  • C. Kittel, "Quantum Theory of Solids" (Wiley, New York, USA 1963;  Second Revised Printing 1987), for selected topics thoughout the course. 

  • M. Tinkham, "Introduction to Superconductivity", for the last section of the course.
 
Other suggested books

C. Kittel, "Introduction to Solid State Physics" (Wiley, New York, USA 8th Ed. 2000).
Introductory textbook -- Should be used whenever any concept discussed in the advanced book is not clear.

N.W. Ashcroft and N.D. Mermin, "Solid State Physics" (Saunders College, USA 1976).
The classical point of view.  Starting from metals, establishes the basic theory of electrons and phonons in crystals.  Several illustrative examples of real materials.

M.P. Marder, "Condensed Matter Physics" (2nd edition, Wiley, USA 2010).
Quite modern and well organized, with a focus on phenomenology (The author "modernized" Ashcroft and Mermin in my opinion).  
Good description of electron-electron interaction and of mechanical properties of solids.

P.M. Chaikin and T.C. Lubensky, "Principles of Condensed Matter Physics" (Cambridge University Press, Cambridge, U.K. 1995).
The modern point of view.  Establishes the general framework for describing the phases of matter, based on symmetries and conservation laws.

J.M. Ziman, "Principles of the Theory of Solids" (Cambridge University Press, Cambridge U.K. 1972).
Elegantly written, excellent chapter on transport properties.

E.M. Lifshitz and L.P. Pitaevskii, "Statistical Physics Part 2", Vol. 9 of Landau and Lifshitz's Course of Theoretical Physics (Butterworth-Heinemann, Oxford U.K. 1980).
Great description of Fermi liquid theory, and of the phenomenological (Landau) theory of magnetism.



Grading Scheme

Half of the grade will be based on 5 Assignments (10% each), which will be posted online in this website.  
The other half of the grade will be based on a final course presentation given by each student.  


Final course presentation

There are three options for the final presentation: Students should present either (1) A recent paper from the literature; (2) A classic paper from the literature, describing a groundbreaking discovery;  (3) A review paper or a book chapter, describing an important topic not covered in class.  Note that the deadline for choosing the paper or topic is February 11th.  Students are welcome to discuss possibilities with me, and I am glad to suggest papers or topics.  


How to succeed

  • Attend Lectures and ask questions;
  • Read and think about the textbook;
  • Do assignments. If you can't solve a problem, talk to your classmates, or come to see me.
    However, it is extremely important that you attempt to solve the problem by yourself first.  
     Experience shows that only students who spend a couple of hours thinking about the problem set will master the basic concepts.  You will absorb very little material by just attending lectures.
  • Start thinking about your project as early as possible. 




Preliminary Schedule


MonthDateDayDescriptionHomework
Jan6RNo class
11TCh. 6: Introduction to Group theoryHMW 1 out
13R"
18T"
20RApplications to Quantum Mechanics in general

25TApplications to Quantum Chemistry

27RApplications to Semiconductor Physics

Feb1T"
3RApplications to Magnetism

8T"
HMW 1 in, HMW 2 out
10RCh. 7: Optical properties, complex susceptibility
15TQuantum theory of the dielectric susceptibility

17RPolaritons
HMW 2 in, HMW 3 out
22TReading Break
24RReading Break
Mar1TNon-linear optics

3RCh. 9: Coherence and correlationDeadline for Project Choice
8TDerivation of Bloch-Wangsness-Redfield theory
10RMagnetic resonance
HMW 3 in, HMW 4 out
15TFluctuation-dissipation theorem
17RMesoscopic physics

22TNo Class (March meeting)Work on the project!
24RNo Class (March meeting)
Work on the project!
29TCh. 10: MagnetismHMW 4 in, HMW 5 out
31R"

Apr5T"

7R"
12T"
14RFinal Presentation 1, 2HMW 5 in