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Summary

1. Recent technological development has increased our capacity to study the deep sea and the marine ben-

thic realm, particularly with the development of multidisciplinary seafloor observatories. Since 2006, Ocean

Networks Canada cabled observatories, have acquired nearly 65 TB and over 90 000 h of video data from

seafloor cameras and remotely operated vehicles. Manual processing of these data is time-consuming and

highly labour-intensive, and cannot be comprehensively undertaken by individual researchers. These videos

are a crucial source of information for assessing natural variability and ecosystem responses to increasing

human activity in the deep sea.

2. We compared the performance of three groups of humans and one computer vision algorithm in counting

individuals of the commercially important sablefish (or black cod)Anoplopoma fimbria, in recorded video from a

cabled camera platform at 900 m depth in a submarine canyon in the Northeast Pacific. The first group of

human observers were untrained volunteers recruited via a crowdsourcing platform and the second were experi-

enced university students, who performed the task for their ichthyology class. Results were validated against

counts obtained from a scientific expert.

3. All groups produced relatively accurate results in comparison to the expert and all succeeded in detecting pat-

terns and periodicities in fish abundance data. Trained volunteers displayed the highest accuracy and the algo-

rithm the lowest.

4. As seafloor observatories increase in number around the world, this study demonstrates the value of a hybrid

combination of crowdsourcing and computer vision techniques as a tool to help process large volumes of ima-

gery to support basic research and environmental monitoring. Reciprocally, by engaging large numbers of online

participants in deep-sea research, this approach can contribute significantly to ocean literacy and informed citi-

zen input to policy development.

Key-words: computer vision algorithms, crowdsourcing, deep-sea imagery, Digital Fishers, fish

counting, OceanNetworks Canada, seafloor observatories, underwater video

Introduction

Advances in instrumentation are allowing ecosystems to be

investigated at increasing spatial and temporal resolution

(Porter et al. 2009). As a direct result, researchers in the

environmental and biological sciences are faced with growing

challenges and opportunities related to ‘big data’ (Gr�emillet

et al. 2012; Woodward et al. 2014). Data are accumulating

faster than the processing power of research laboratories and

institutions, and their effective exploitation requires more

human resources and additional computational solutions.

Computer algorithms have proven to be effective at assimi-

lating and summarizing large volumes of scalar data (e.g.

Belkin & O’Reilly 2009), but computer vision software solu-

tions are still far from replacing the human eye in extracting

scientific information from complex data types like imagery

(Aguzzi et al. 2009; Purser et al. 2009; Aron et al. 2010;

Schoening et al. 2012). For some image analysis applica-

tions, engaging the public in initial data processing or anno-

tation (i.e. adding caption and metadata to a digital image)

has yielded useful results. The astronomical science commu-

nity was among the first to apply crowdsourcing approaches

to image analysis, engaging the public in analysing a huge*Correspondence author. E-mail: marjolaine.matabos@ifremer.fr
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archive of space imagery through the Zooniverse platform

(https://www.zooniverse.org/projects, Galaxy Zoo, Lintott

et al. 2008). Crowdsourcing has become a form of citizen

science where members of the public contribute to scientific

research projects by acquiring and/or processing data, with

few prerequisite knowledge requirements (Silvertown 2009).

Crowdsourcing has benefited from the Web 2.0 technologies

that enabled user-generated content and interactivity, such

as wiki pages, web apps or social media. These web develop-

ments have enabled structured data analysis by a substantial

number of online contributors (Wiggins & Crowston 2011).

Crowdsourcing has the potential to contribute to biological

studies that use deep-sea video and still photo imagery as a

primary source of information. The floor of the deep ocean,

and its important but still unquantified reservoir of biodiver-

sity, are invisible from space and can only be imaged from a

few metres distance using artificial lighting and deep-sea cam-

eras. As a result, only about 5% of the seabed has been sur-

veyed by platforms like remotely operated vehicles (ROVs)

and autonomous underwater vehicles (AUVs) (Ramirez-Llo-

dra et al. 2010). In situ imagery allows biologists to quantify

the spatial distribution and seasonal variability of deep-sea

species in their natural habitat, and to document their beha-

viour (Tunnicliffe 1990; Copley et al. 1997, Copley, Jorgensen

& Sohn 2007; Aguzzi et al. 2010; Porteiro et al. 2013). Sea-

floor observatories currently under development or in opera-

tion in several areas of the world ocean will produce

unprecedented volumes of imagery that will create a process-

ing bottleneck. TheNEPTUNE and VENUS cabled observa-

tories, operated by Ocean Networks Canada (ONC; http://

oceannetworks.ca) off Vancouver Island, Canada, support

continuous observations of faunal and habitat variables and

have been recording daily video imagery from coastal to abys-

sal habitats since February 2006. The rapidly growing data

archive now contains video from 26 current and historical

video camera systems across the network, whose output,

when added to ROV imagery from observatory installation

and maintenance operations, currently consists of over

90 000 h of video for a total of nearly 65 TB of video data.

The field of computer vision is well-developed for certain

land-based image analysis tasks such as, among others, human

facial recognition (Zafeiriou, Zhang & Zhang 2015) and

human behaviour analysis (Vishwakarma&Agrawal 2012). In

contrast, underwater imagery analysis is an emerging field that

presents unique challenges not found in other domains, such as

light propagation effects in water (i.e. differential spectral

attenuation, scattering) and non-uniform artificial lighting, to

name a few (Schettini & Corchs 2010). Most automated tech-

niques are designed to sort images based on predetermined cri-

teria or to annotate images to add information about objects

or areas of interest. They vary from semi-automatic methods,

which require various degrees of human intervention during

execution, to automatic methods which, once algorithms are

trained usingmanually generated training sets, can sort or pro-

duce annotations without human intervention (e.g. Chuang,

Hwang & Williams 2014). Best analytical results are achieved

when automated techniques are developed for each specific

target application and dataset, as these techniques often do not

generalize easily.

Deep-sea citizen science is still in its infancy, and it is diffi-

cult to evaluate its potential for contributing to our knowl-

edge of this environment. Only two crowdsourcing

applications for underwater seafloor imagery are widely

available to date (i.e. the Zooniverse Seafloor Explorer,

https://www.seafloorexplorer.org and Ocean Networks Cana-

da’s Digital Fishers, http://dmas.uvic.ca/DigitalFishers), and

marine citizen science projects are relatively few compared

with projects developed on land (Roy et al. 2012). The goal

of this study was to evaluate the accuracy of crowdsourcing

in relation to computer vision algorithms and human experts,

in the processing of deep-sea video imagery for deep-sea biol-

ogists. We focused on identifying and counting a commer-

cially important fish species (the sablefish Anoplopoma

fimbria; Kulka & Pitcher 2001). A selected video dataset was

screened by untrained citizen scientists, a computer vision

algorithm for fish counting (Fier, Branzan Albu & Hoe-

berechts 2014), undergraduate university students (3rd year

biology class) and a scientific expert (PhD student). Ulti-

mately, we aim to provide guidance to researchers for opti-

mizing the processing of imagery ‘big data’ in the context of a

growing global network of deep-sea observatories.

Materials andmethods

SAMPLING SITE AND DATA ACQUIS IT ION

The videos analysed in this study were acquired by a camera platform

(Mid-East) at a 900 m depth seabed site in Barkley Canyon, a sub-

marine canyon in the Northeast Pacific Ocean, off Vancouver Island,

Canada. For this study, 50 s of video (MP4 format) was acquired every

30 min over a 1-month period, from 21.30 h on 14 October to 00.00 h

on 14 November 2011, Pacific Standard Time (PST, local time), for a

total of 1439 video sequences (see Video S1, Supporting Information,

for an example). The camera orientation was fixed at 45° down from

horizontal, so that the field of view imaged approximately 2 m2 of the

sediment-covered seabed. The task for all human and machine partici-

pants was to count sablefish, A. fimbria (Fig. 1), in each video clip in

the project dataset. The target species (sablefish) was easily identifiable

by untrained observers, and images had few non-target fish species.

This dataset formed part of a PhD study by C. Doya (Doya et al.

2014), referred to hereafter as the ‘Expert’. For each video segment, the

Expert manually reported in a spreadsheet the number of individuals

of the most abundant and discernible species over the entire video,

using QuickTime©media player software (Apple Inc., Cupertino, CA,

USA). When a sablefish was not fully included in the region of interest

or partially hidden by another fish, but was still identifiable, the animal

was counted. When several sablefish overlapped and to avoid mis-

counting, orientation and trajectorywere used to identify individuals.

UNIVERSITY STUDENT PARTICIPATION

The project dataset was provided to a class of 60 3rd year biology stu-

dents as a laboratory exercise for Biology 335 (Ichthyology), at the

University of Victoria in 2012. Each video clip was reviewed by 1–4 dif-

ferent groups of students (working in pairs). Students were asked to

count individuals and identify fish species in the videos and also record
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data on the laterality of fish behavioural response (left or right turning)

to the camera structure as part of the laboratory exercise requirements

(results not shown). The students involved had no background in image

analysis. They were given a 10-min introduction to ocean observatories

and camera systems, followed by a 15 min demo of the online data

access and annotation tools. The students were then instructed on the

tasks to be accomplished and the methodology, including how to

recognize the species of interest. The videos were watched indepen-

dently by each group of Students on their own computers. They were

given a period of a few weeks to complete the tasks, outside of lecture/

laboratory time. Students performed all annotations online using the

ONC online annotation tool available in the video viewer SeaTube

(dmas.uvic.ca/SeaTube, Fig. S1). After watching the full segment of

video, students were asked to add an annotation using the dedicated

button on the interface (Fig. S1). All annotations were recorded in the

ONC database. Results from a student who did not annotate a single

fish in all processed videos were disregarded.

CROWDSOURCING

In collaboration with the Centre for Global Studies at theUniversity of

Victoria, ONC developed Digital Fishers (http://dmas.uvic.ca/Digital

Fishers; Hoeberechts et al. 2015) in 2011, an online crowdsourcing

platform to help analyse and annotate video acquired from deep-sea

cameras. A special ‘sablefish mission’ to annotate the project video

dataset was conducted from May 2014 to February 2015. When con-

necting to the Digital Fishers platform, participants were informed

though a pop-up window of the ongoing task which consisted of deter-

mining, after watching the 1-min video, how many sablefish were pre-

sent. An ‘ad hoc tailored’ tutorial provided cues for recognizing the

species of interest, mainly through pictures. At the end of each video

clip, observers were prompted to enter an observed sablefish count,

which when completed allowed them to view the next clip (see Fig. S2).

Clips were provided in random temporal order to the users. A button

with choices from 0 to 12+ (i.e. maximum number of fish observed by

the Expert) simplified the annotation task and linked participant infor-

mation to counts in the database.

COMPUTER VIS ION ALGORITHM

A custom computer vision algorithm was developed over the course of

4 months as a computing science student project to specifically detect

and count sablefish in video from the Barkley Canyon camera site

(referenced as the ‘Algorithm’ in this paper). An overview of the

method is presented here (see Fig. S3); for details, the reader is referred

to Fier, Branzan Albu & Hoeberechts (2014). The approach consisted

of three sequential modules: ‘Preprocessing’, ‘Detection’ and ‘Tracking

and Counting’. The first module (Preprocessing) used sequential appli-

cation of filters, colour restoration techniques and lighting and contrast

adjustments to enhance fish-related features while reducing noise in the

videos. The underwater video used for this work presented challenges

for automated analysis, including limited visible range, low contrast,

non-uniform lighting, wavelength dependent colour attenuation, com-

pression artifacts, light scattering by marine snow or resuspended sedi-

ment, and turbidity. The preprocessing step attempted tomitigate these

effects to enhance the performance of the subsequent steps.

The second module (Detection) identified potential fish candidate

regions using three separate background subtraction techniques which

were combined using logical operators. Shape descriptors including

height, width and area thresholds removed any small or oblong non-

fish shaped objects from the candidate set. A hue-based threshold was

used to filter out any false positives generated by background such as

marine snow or clouds of sediment, which had different colour charac-

teristics than target sablefish. Thresholds for merging and noise detec-

tion were empirically determined by evaluating results for the

experimental database. The output of the Detection step was a binary

image representing the segmented fish candidate regions.

The third module (Tracking and Counting) used motion analysis to

track the fish candidates and count them. A fish was assumed to enter

and leave the frame at a boundary and to move on a connected path,

sometimes stopping on the way. The tracking system matched fish

through their motion between successive frames. This countingmethod

could detect both unoccluded and partially occluded fish present in the

frame. Note that the refinement of the algorithm did not incorporate a

machine learning element, but was done by human evaluation of the

results and subsequent improvement of the techniques used. To evalu-

ate the algorithm’s performance, it was tested on 100 randomly selected

videos from the dataset for which the fish were counted manually and

comparedwith the output of the algorithm.

DATA ANALYSIS AND COMPARISON

Data from all groups were matched using the date and time informa-

tion contained in themetadata. Results from Students and Crowdwere

automatically recorded in the ONC common database with the accom-

panying metadata following international ISO 19115 standards. Each

annotation is associated with a UserID, the video acquisition and

annotation dates and times, and a set of additionalmetadata (e.g.meta-

data associated with the instrument, the observatory, the type of data).

In the case of the Expert and the Algorithm, data were locally saved on

a hard drive and each count was associated with the original video file-

name that includes the observatory location, type of camera, and date

and time of acquisition, allowing for subsequent data combination.

For the Crowd annotators, three groups were identified: the ‘Total’

Crowd included all data from all participants (503 individuals), the

‘Novice Crowd’, included data from the first 100 annotated videos of

all users, and the ‘AdvancedCrowd’ included videos 101 and higher for

all users. An analysis comparing the percentage of correct answers with

the number of video processed showed that above 100 videos watched

(‘Advanced Crowd’), with few exceptions, the percentage of correct

counts remained above 70% (Fig. 2a). Only 6�5% of all observers (i.e.

33 individuals) annotated more than 100 videos. Fish classification

results for the three different groups of human operators plus the Algo-

rithm were compared considering only videos screened at least once by

Fig. 1. Photo extracted from a video recorded in Barkley canyon, off

Vancouver Island (BC, Canada) showing sablefish, Anoplopoma

fimbria.
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all groups. When there were multiple records of sablefish counts for

individual videos (Students and Crowd, Table 1), three statistics were

considered: the mean, median and larger mode. Sablefish counts from

Students, Crowd andAlgorithmwere assessed in relation to the Expert

‘groundtruthing’ data using a Pearson’s product moment linear corre-

lation coefficient, and a paired Wilcoxon signed-rank tests. These two

tests were performed on the raw data (before combining data), as well

as on the mean, median and larger mode calculated on each video.

Accuracy was determined by calculating the percentage of counts that

fit the Expert’s, and the percentage of counts above (positive difference)

and below (negative difference) the Expert’s. For this, within each

group and for each video, the difference was obtained by subtracting

individual sablefish count from that obtained by the Expert.

In order to test for groups’ abilities to detect similar temporal trends

and patterns in the dataset, Whittaker–Robinson periodograms were

calculated on fish counts for the Expert and Algorithm and the median

for the Students and Crowd in order to screen for periodicities in fish

abundance data. Period significancewas tested by a permutation proce-

dure (Legendre & Legendre 2012). All data analyses were conducted in

R language (RCore Team2015).

Results

In total, 1059 video files were screened by all four groups

(Expert, Students, Crowd and Algorithm). Details on group

size and the number of times a video was viewed are listed in

Table 1. Over the crowdsourcing (Digital Fishers) campaign

period, 503 Citizen Scientists, participated in the mission and

collectively contributed 14 192 annotations to 1430 videos.

Fig. 2. (a) Percentage of correct counts in relation to the number of videos processed for eachmember of the Crowd. One citizen scientist who anno-

tated more than 1400 videos was removed from the analyses. The red line depicts the 100 annotated videos threshold. Circles in red depict the only

three users who annotatedmore than one hundred videos but obtained <70% correct counts. (b) Percentage of correct counts in relation to the num-

ber of sablefish in the video as determined by the Expert (see text for details). ‘d’ provides the margin of error tolerated for the absolute difference in

number of fish between the expert and each member of the Crowd, and the numbers on the curves indicate the number of videos containing a given

number of sablefish. Both graphs were calculated using 1391 videos processed by both the Expert and the Crowd.

Table 1. Group size (N), number of times a video was viewed (Nt), Wilcoxon paired rank test and Pearson linear correlation coefficient with Expert

for each treatment group (i.e. Experts, Students, Novice crowd,Advanced crowd, Total Crowd andAlgorithm)

Students

Novice

crowd

Advanced

crowd Crowd Algorithm

N 60 503 33 503 1

Nt 1–4 1–20 1–8 5–23 1

Wilcoxon signed-rank test

Data – – – – *
Mean ** ** ** ** –
Median * ns * ns –

Pearson correlation coefficient

Data 0�90* 0�78* 0�81* 0�79* 0�82*
Mean 0�93* 0�93* 0�92* 0�95* –
Median 0�95* 0�96* 0�94* 0�97* –

Differences in counts for individual video clips relative to Expert

No diff (%) 74�1 71 76�2 72�5 62�9
Positive diff (%) 2�6 15�7 12�5 14�7 6�9
Negative diff (%) 23�3 13�3 11�3 12�8 30�2

*Significant at P < 0�001, **P < 0�0001. Differences (diff) in counts relative to Expert provide the percentage of counts within each group that are

below or above the Expert counts.
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Over 9 months, each video was on average screened by 10 dif-

ferent Citizen Scientists from both the Novice and Advanced

Crowds (Fig. 3). When only considering the Advanced

Crowd, each video was only screened two or three times on

average, similar to the Students group. In terms of annota-

tions, 27 individual Citizen Scientists (5% of the total Crowd)

contributed to more than 50% of the total number of annota-

tions, and among them six (i.e. 1%) contributed 20% of total

annotations. The most involved Citizen Scientist contributed

10% of the total number of annotations and annotated all

videos included in the campaign.

In general, all groups performed well in comparison to data

from the Expert and all Pearson linear correlations were signif-

icant (Table 1). Results obtainedwith themodematched those

of the median and are not presented. For all groups, consider-

ing the median (or larger mode) value per video clip improved

the correlation with Expert data (Table 1). The paired Wil-

coxon signed-ranked test rejected the null hypothesis of no dif-

ference between Expert counts and each individual group

counts except when comparing against the mode/median for

the Novice Crowd and the total Crowd. When comparing raw

count data, the Students performed best (cor = 0�90) and the

Novice Crowd worst (cor = 0�78). However when comparing

the different measures of central tendency, two groups of

Crowd (Novice and Total) out-competed the Students and the

Algorithm (Table 1). TheCrowd as awhole performed slightly

better than members of the Novice and the Advanced Crowd

with respect to mean and median values, while the Advanced

Crowd performed better when considering the raw data. This

implies that the use of a central statistic for any group of people

decreased the influence of mistakes and thus, a higher number

of participants help improve the quality of the results.

The Algorithm displayed the lowest accuracy of correct

counts for individual clips (62�9%) and the Advanced Crowd

the highest (76�2%) compared to the Expert (Table 1). The

Crowd’s accuracy was related to the number of fish in the

videos with dramatic increases in ‘wrong answers’ with increas-

ing numbers of sablefish (Fig. 2b, black line). However, this

tendency disappears if we permit a certain margin of error in

defining the ‘right’ answer. Indeed, when allowing for �2 fish

around the real (Expert) value, the percentage of correct

answers remains high (Fig. 2b). This latter point is important

to consider as missing two fish when only two are present will

have greater consequences thanmissing twowhen there are 12.

The Algorithm, and to a lesser degree the Students, showed

the strongest tendency to undercount fish (30�2 and 23�3%
clips undercounted, respectively) relative to the Expert

(Table 1). Conversely, the three groups of Crowd tended to

overcount (Table 1). Examining count distributions for each

video provided insights into the reasons for miscounting. For

Students, wrong answers were mostly observed when two fish

or more were present in the videos. Missed fish appeared to be

those furtively passing in the background or behind other fish,

or those for which only a small part enters the field of view,

making them difficult to detect. Looking at the Crowd data,

several situations were identified: (i) Citizen Scientists tended

to overcount as they included fish shadows in their counts; (ii)

when a high number of fish passed in front of each other, Citi-

zen Scientists tended to overcount (while Students under-

counted); (iii) similarly to Students (but more rarely)

undercounting by Citizen Scientists may have been related to

missed fish in the shadowed back corners of the field of view,

and (iv) in some rare situations where counts were obviously

inaccurate, Citizen Scientists may have simply inadvertently

hit the wrong key or knowingly entered biased results. It is

important to note that this study did not consider miscounting

by the Expert.

Despite divergence among the different groups in over- and

undercounting, sablefish counts accuracy was >60% for the

Algorithm and >70% for the human groups (Table 1). Peri-

odograms calculated for each dataset revealed common peri-

odicities detected by the different groups (Fig. 4). All groups

successfully detected a tidal related 12�5 h and 24 h periodici-

ties in the dataset, while a 48 h harmonic was detected by all

but the Algorithm. An additional significant periodicity at

64–65 h was identified by the Expert, the Students and the

Algorithm.

Discussion

As the deep ocean is increasingly monitored by networks of

fixed (i.e. observatories), mobile (i.e. ROVs and AUVs) and

semi-mobile (i.e. crawlers) imaging platforms, improving our

capacity to extract biological information from underwater

imagery is becoming a strategic imperative. Here, we found

that human groups (i.e. Citizen Scientists, Students) and an

automated computer vision algorithm performed relatively

well in counting a single species of fish, using an Expert obser-

ver’s results (a PhD student) as a benchmark. Until computer

vision algorithms become fully competent for such tasks,

hybrid solutions that combine machine vision and human
Fig. 3. Frequency distribution of the number of times a video was

watchedwithin the different groups.
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visual discrimination may help reduce the ‘image analysis bot-

tleneck’ (Gaston & O’Neill 2004; Aguzzi et al. 2009). These

hybrid solutions will require systematic development and vali-

dation, using results from studies such as presented here.

In terms of count accuracy, data from human groups (i.e.

Crowd, Students) were nearly equivalent with the highest accu-

racy (vs. Expert) observed for Students and the Advanced

Crowd. Elsewhere, comparisons of marine and terrestrial

alpha-diversity data (number of species in a sample/area)

obtained by professional scientists vs. volunteers given struc-

tured training, have shown that volunteers perform almost as

well as professionals (Crall et al. 2011; Holt et al. 2013). Even

for more complicated tasks such as adding measurements to

identifications, citizen scientists can provide comparable

results to experts (Delaney et al. 2008; Butt et al. 2013). For

other requirements, advanced training may be needed to

ensure accurate results. For example, in this study Students

outperformed citizen scientists (Crowd) when their results were

subjected to periodogram analysis for identification of tempo-

ral trends and patterns. They were the only human group that

identified all significant periodicities detected by the Expert,

corresponding here to the tidal signal (Doya et al. 2014). This

result is of particular interest for environmental monitoring

where detecting trends and events in time series is more rele-

vant than absolute counts. Other studies of citizen science have

also observed better performance from highly trained or edu-

cated volunteers, highlighting the influence of education on the

quality of results (Delaney et al. 2008). Note that for this

study, advanced citizen scientists were distinguished from

novices based on their viewing and annotation experience

(more than 100 video clips), a threshold above which citizens

had more than 70% correct counts. A high involvement in the

project benefitted the user’s performance, and could be argued

to represent a form of training. On the other hand, the quality

of the results can also be a function of the number of volunteers

involved. Our study compared 503 citizen volunteers and 60

students against an expert.We obtained the highest correlation

with the Expert for the combined results (i.e. median) of the

two largest human groups (Novice Crowd and Crowd).

Crowdsourcing or ‘virtual citizen science’ benefits from multi-

ple replications of the same tasks by hundreds or thousands of

people, allowing the use of statistics to improve the quality of

Fig. 4. Whittaker–Robinson periodograms

generated from the counts acquired by the dif-

ferent groups. Squares and vertical lines repre-

sent significant periodicities. The vertical lines

were only drawn to assist in the reading of the

period value.
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the results (Wiggins & Crowston 2011; Bird et al. 2014; Kos-

mala et al. 2016). Here, the use of the median or mode further

increased the strength of the correlation and appeared to be a

simple and efficient way to combine large citizen datasets.

In most citizen science studies, volunteers are formally

trained in dedicated sessions with professionals, so that their

level of expertise is closer to our undergraduate Student cate-

gory (Azzurro et al. 2013). Taking advantage of university

classes might provide higher quality results but requires more

planning and researcher involvement to establish collabora-

tions, fit projects to teaching programs and priorities, and pro-

vide training prior to data processing. In this case, the

educational value constituted a priority over data processing.

Asking students to complete the task as a course requirement

(as we did in this study), could also ensure higher quality

results, though outliers, such as the student who systematically

annotated zero fish, can also occur. These investments should

be weighed against task complexity and potential returns in

terms of data quality (Delaney et al. 2008). Here, the task to be

accomplished was relatively easy and all approaches yielded a

valuable solution.

While our results demonstrated that computer vision can

yield valuable results for fish population monitoring, the algo-

rithm was the poorest performer when compared against the

Expert and the different human groups. The lower perfor-

mance observed for the Algorithm (compared to Expert, Stu-

dents and Crowd) can be related to the limitations already

identified in Fier, Branzan Albu & Hoeberechts (2014) where

fish were camouflaged in the poorly illuminated background,

overlapping and occluding each other. It is possible that with

additional effort and innovation in the development, the results

of the algorithmic method could be improved. Furthermore,

the Algorithm results for this dataset might not easily general-

ize to other seafloor video datasets. Computer vision algo-

rithms are often specific and must be designed to detect and

classify particular targets against different background types

(Purser et al. 2009; Aguzzi et al. 2011). Different techniques

may be required, for example, to detect and classify marine

species of interest inmore complex environments where organ-

ism densities are high and the background is made of complex

3D biological and mineral structures (e.g. hydrothermal vents

or coral reefs).Object detection algorithmsperformbest in situ-

ations of uniform background, such as detecting plankton in

the water column (Tsechpenakis, Guigand & Cowen 2007) or

benthic animals on soft sediments (Aguzzi et al. 2009; Schoen-

ing et al. 2012). Until computer vision algorithms can over-

come these limitations, citizen science and the use of volunteer

networks will likely be an important near-term solution for

analysing large image datasets from complex marine environ-

ments, provided that observer accuracy can be understood,

and perhaps improved with training (Dickinson, Zuckerberg

&Bonter 2010; Holt et al. 2013).

Intermediate, hybrid solutions may also be possible. Ours

and other study results suggest that volunteer data can be used

to improve machine learning results. For example, in astron-

omy, where numbers of galaxy images exceed even the process-

ing power of crowds of online citizen scientists, astronomers

have successfully used samples of crowdsourced data that had

a high degree of internal agreement to train computer algo-

rithms (Kuminski et al. 2014). Statistical methods being devel-

oped to facilitate the use and validity of citizen science data

(Bird et al. 2014; Isaac et al. 2014) could be used to select sub-

samples of quality citizen data for machine learning systems.

For this, it is essential that any crowdsourcing project includes

systematic archiving of metadata in the project development.

Here, the quality of themetadata permitted an accuratematch-

ing and comparison of annotations from different sources. Our

successful combining of results of student and citizen annota-

tions suggests that additional metadata could be generated by

an algorithm that would flag videos or images that have been

processed by scientists, trained volunteers or citizens, and auto-

matically calculate the median for subsequent statistical com-

parisons, or to identify high quality datasets for training

computer vision algorithms. Another human-machine hybrid

approach could involve having volunteers and/or students

focus on validating events and trends identified by automated

screening systems. This method could enhance participant

motivation and improve performance by focussing their atten-

tion on higher quality tasks such as verifying abundances or

behaviour in specific time blocks identified by the computer

processing, rather than sorting long, continuous imagery time

series.

Our knowledge of deep-sea ecosystems is limited and frag-

mented (Ramirez-Llodra et al. 2010), at a timewhen industrial

incursions into the deep ocean are increasing with unknown

consequences for benthic ecosystems and the planetary sup-

port services they provide (Boschen et al. 2013; Wedding et al.

2013). Remote monitoring that continuously collects imagery

is one tool that can be used to document and assess long-term

ecosystem change in the deep sea. Realizing the full potential

of this technology will require effective solutions for processing

massive image datasets to extract relevant biological and habi-

tat information. This study has demonstrated that citizen

science, using both crowdsourcing and trained volunteers,

together with constantly improving computer vision and

machine learning technologies, can contribute to meeting the

image processing challenge. In the case of ocean observatories,

crowdsourcing, perhaps partnered with algorithms, can help

researchers extract trends and events from imagery time series

that will improve our understanding of natural variability and

therefore our ability to identify anthropogenic impacts. Inter-

actions between science and society have become an important

focus for ‘big science’ programs and infrastructure installa-

tions. Citizen science can contribute to developing scientific lit-

eracy and informed societal decision-making (Bonney et al.

2009). Engaging the public in data analysis will ultimately ben-

efit marine conservation and protection of marine ecosystem

services by increasing awareness of our oceans.
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Details of electronic Supporting Information are provided below.

Video S1. Example of video from the project dataset recorded in Bark-

ley Canyon (British-Columbia, Canada, using the Ocean Networks

CanadaObservatory.

Fig. S1.Ocean Networks Canada’s annotation system used by the stu-

dents to count the number of Sablefish in the videos (http://dmas.

uvic.ca/SeaTube).

Fig. S2. Tutorial provided to the Crowd participants through the web

interfaceDigital Fishers (http://dmas.uvic.ca/DigitalFishers).

Fig. S3. Summary of automated analysis method to detect fish in the

Barkley Canyon videos recorded by the Ocean Networks Canada

observatory.
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