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Wind Power: The Economic Impact of Intermittency 

G. Cornelis van Kooten 

Abstract  

Wind is the fastest growing renewable energy source for generating electricity, but 

economic research lags behind. In this study, therefore, we examine the economics of 

integrating large-scale wind energy into an existing electrical grid. Using a simple grid 

management model to investigate the impact of various levels of wind penetration on grid 

management costs, we show that costs of reducing CO2 emissions by relying more on 

wind power depend on the generation mix of the existing electricity grid and the degree 

of wind penetration, with costs ranging from $21 to well over $1000 per tonne of CO2 

reduced. Costs are lowest if wind displaces large amounts of fossil fuel production and 

there is some hydroelectric power to act as a buffer. Hydro capacity has the ability to 

store wind generated power for use at more opportune times. If wind does nothing more 

than replace hydro or nuclear power then the environmental benefits (reduced CO2 

emissions) of investing in wind power are small. 

Keywords: Wind power, carbon costs, electricity grids, mathematical programming 

JEL Classification: Q54, Q41, C61
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1. INTRODUCTION 

Because of their ubiquity, fossil fuels have become the backbone of industrial 

economies, while the electricity supply infrastructure is their spinal cord. Burning of 

fossil fuels emits gases contributing to global climate change and local pollution, while 

dependence on oil and gas raises issues concerning supply security. For these reasons, 

countries seek renewable sources of energy, including in particular wind, solar and tidal 

forms that suffer from intermittency in supply that cannot easily be overcome through 

storage. Yet, wind is now the fastest growing renewable energy source for generating 

electricity (van Kooten and Timilsina 2009).  

In this study, we focus on wind energy to examine the economics of integrating 

large-scale wind energy into an existing electrical grid, emphasizing in particular the 

costs associated with intermittency. Two approaches to estimating the indirect costs of 

wind variability can be identified. First, some researchers have focused on the costs of 

additional system reserves required to cover the increased variability of wind (Gross et al. 

2003, 2006; Kennedy 2005). When wind generating capacity is installed on a large scale, 

greater system balancing reserves are required than would be the case if an equivalent 

amount of thermal or hydro capacity were installed, even after adjusting for the lower 

capacity factors associated with wind. If wind farms are placed over a large geographic 

area, then, for the same installed wind power capacity, the output would be smoother than 

if it were to come from a wind farm at a single site. Therefore, to overcome variability, it 

is necessary to locate wind farms across as large a geographic areas as possible and 

integrate their combined output into a large grid. Doing so will reduce the costs of wind 
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power generation. 

The second approach focuses on the implications that wind has on the 

management of an electricity grid and the costs of retaining system balance (Lund 2005). 

Because wind power is non-dispatchable, extant generators must be ready to dispatch 

power to the grid in the event of a decline in wind availability. Fluctuations in wind result 

in increased ramping-up and ramping-down of base-load generators, failure of slow-

ramping facilities to follow variations in load, and more frequent starts and stops in the 

case of peak-load (open-cycle) gas plants, thereby leading to increased operating and 

maintenance (O&M) costs. While this problem could be mitigated by storage, no viable 

large-scale storage systems are currently available. Because of the storage problem, wind 

power is used most effectively in electricity grids that have large hydropower capacity. In 

that case, water can be stored in reservoirs by withholding hydro-electricity from the grid, 

but releasing water and generating electricity when there is no wind power. 

The second approach is employed in this study. It is based on the notion that a 

suitable constrained optimization model of an electricity grid that assumes rational 

expectations (load and wind power availability are known beforehand) should project 

costs that are equal or lower to those based on rule-of-thumb requirements regarding 

additional reserves (Gross et al. 2006, 2007). The only difference is that a grid 

optimization model takes explicit account of the need to balance output from existing 

generators on the grid (see Maddaloni et al. 2008).1  

We begin in the next section by examining the issue of integrating wind power 

                                                 
1 The first approach for calculating reserves relies on known information about wind 
variability as much as the second approach. 
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into electricity grids in more detail, and developing a model for estimating the potential 

costs of integrating varying amounts of wind into grids with differing generation mixes. 

The results are provided in section 3. We find that a grid dominated by fossil fuel 

generating capacity but with adequate hydroelectric facilities that can store wind 

generated power at crucial times is optimally suited for investment in wind farms. 

Somewhat surprisingly, however, the costs of reducing CO2 emissions are higher than 

socially desirable in all the cases we examine. Some concluding observations follow in 

section 4. 

2. INTEGRATING WIND POWER INTO ELECTRICITY GRIDS  

Consider how conventional generation capacity can be replaced by wind capacity 

while maintaining system reliability for a large, relatively isolated system (Love et al. 

2003; Pitt et al. 2005). To do so, we employ hourly load data from the ERCOT (Texas) 

system for 2007 (2008), and wind data from sites located in western Canada. The 

ERCOT load data are standardized to a peak load of 2,500 MW (the ERCOT peak 

load/demand is 62,101 MW). Actual wind power output data are available on an hourly 

basis for sites in Alberta, while hourly wind speed data from BC Hydro (2004) are 

available for sites in north-eastern British Columbia. The two regions for wind data are 

chosen because they are both located immediately east of the Rocky Mountains where 

wind potential is very high, and are some 800-1000 km apart so that winds should not be 

highly correlated.  

Wind speed measurements occurred at heights of 30 m and 50 m for the BC sites 

and can be converted to wind power. Wind power depends not only on wind speed but 



5 

 

also on the height of the turbine hub, so measured wind velocity is adjusted using the 

following well-known relationship: 

 












data

hub
datahub H

H
VV , (1) 

where Vhub is the wind velocity (m/s) at the turbine hub height, Vdata is the wind velocity 

(m/s) at the height it was measured, Hhub is the height of the wind turbine hub (m), Hdata 

is the height (m) at which the data was measured, and α is the site shear component that is 

dependent on the type of ground surface on which the wind turbine is built. We derive 

wind power output using power curves for wind turbine products from ENERCON 

GmbH (2007), assuming a 2.3 MW, Enercon E-70 wind turbine with hub height of 95 m 

and 71 m rotator diameter, and α = 0.15 in Equation (1).  

The artificially created hourly wind power data for north-eastern BC and the 

actual wind power output data for southern Alberta are each adjusted to a single-2.3 MW 

turbine basis. The wind power information is summarized in Table 1. Data from each of 

the four northern wind sites are for a single turbine, so the combined data are divided by 

four. For sites in southern Alberta, hourly wind power outputs are divided by the total 

capacity (264 MW) of the seven wind farms in the analysis and multiplied by 2.3. The 

simple coefficient of correlation between the individual northern and southern sites varies 

between –0.078 and –0.011, implying little or no (negative) correlation. The correlation 

between individual northern sites varies between 0.435 and 0.847, while it varies between 

0.780 and 0.833 for individual southern sites, implying positive correlations within 

regions but not across regions. Nonetheless, the data indicate that there are 18 hours when 
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no wind power is available, despite the negligible correlation between northern and 

southern sites;2 the maximum (standardized) wind power output for any given hour is 

2.086 MW. 

Table 1: Wind Penetration based on Western Canada Wind Sites 

Notes: 
a Values are based on the output of a single 2.3 MW turbine, but it is possible to expand 
to 500 MW.  
Source: Authors’ calculations. 

 

Since we are interested in a situation where some wind power is always available, 

we added a fifth wind source based on a wind measurement site on Pulteney Point on the 

north end of Vancouver Island, British Columbia (see Prescott et al. 2007). This site is 

some 850-900 km from the nearest site east of the Rockies. We calculated the wind 

power output for this wind site assuming an Enercon E-70 turbine, and combined the 

resulting power output with that calculated for the four sites in north-eastern BC. Again 

we standardized the output to the single 2.3 MW capacity turbine by dividing the 

                                                 
2 Counting from the first hour in January, the hours with zero wind power output are 
1691, 1692, 2299, 2336, 2338, 3176, 3823-3826, 4835, 6445-6450, and 7514. 

Site 
Capacity 

(MW)
Production 

(GWh)
Capacity factor 

(%)
Sites in southern Alberta currently in operation  
Castle River #1 40 350.440 28.7
Cowley Ridge 38 332.918 7.4
Kettles Hill 9 78.849 27.4
McBride Lake  75 657.075 34.4
Summerview 68.4 599.252 34.9
Suncor Magrath 30 262.830 36.6
Taylor Wind Farm 3.6 31.540 18.8
Hypothetical sites in north-eastern British Columbiaa  
Aasen 2.3 4.250 21.1
Bessborough 2.3 3.387 16.8
Erbe 2.3 3.603 17.9
Bear Mountain 2.3 7.044 35.0
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resulting wind power output by five (as we now have data from five sites). Again we find 

hours when there is absolutely no wind power output, although only four hours in this 

case.3 This illustrates a major problem: Given the diversity of locations and rather large 

distances between sites in western Canada, it is unlikely that any system that relies on 

wind power is going to be able to avoid times of zero wind power output. In our case, we 

rectify the situation by adding to our data the average wind power of the five BC sites, 

shifted forward by 24 hours. In this case, the minimum wind power output for any given 

hour is 0.005 MW while the maximum is 1.779 MW compared to 1.971 MW before 

adjustments.4 

Load Duration and System Reserves 

A load duration curve is determined by sorting the system load (demand) in each 

hour from highest to lowest. The minimum or base load is generally met by a base-load 

power plant such as a coal or nuclear thermal generating facility. In our example, plotted 

in Figure 1, the base load is 878 MW compared to a peak load of 2500 MW. Load 

following facilities may consist of base-load plants, although combined-cycle gas turbine 

(CCGT) plants and hydroelectric are more optimal load-following facilities. These would 

cover load somewhere between the base load of 878 MW and about 1400 MW – that is, 

about 550-650 MW of load-following capacity is required. The remaining capacity needs 

to respond much more quickly as it must meet peak power demands that occur at certain 

                                                 
3 Hours 3823-3826 are without wind power output.  
4 This is similar to a problem discussed by Oswald et al. (2008): Weather systems affect 
very large geographical regions. It is possible for winds to be weak everywhere at the 
same time, even if monitoring sites are located a thousand or more km apart and 
separated by one or more mountain ranges.  
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times of the day and certain times of year. Open-cycle gas plants and hydropower stations 

are ideal peak load facilities.   

A net load is constructed by subtracting wind output from demand. In Figure 1, 

we created net load duration curves for wind penetration rates of 10% and 30%, where 

wind penetration is defined as the ratio of installed wind capacity to peak load. The net 

load has to be met by conventional generators. Notice that the base load falls from 878 

MW to 751 MW, or by 14.5%, for a wind penetration rate of 10%, but to 389 MW, or by 

55.7%, for wind penetration of 30% (41.2% fall compared to the 10% penetration base 

load). As the extent of wind penetration rises, the costs of operating the system increase 

for at least two reasons. First, the net load duration curve is drawn as if wind power 

output is known with certainty, but wind output is highly variable, much more so than the 

variability in supply from traditional generation sources (due to planned and unplanned 

outages). Greater system reserves are required with wind than without wind. Second, as 

wind penetrates the system, less of the system load can be met by base-load power plants. 

There is too much base-load capacity and insufficient peak-load capacity. This will 

increase the average system-wide power generation costs. 
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Figure 1: Load Duration Curves and Base Load with No Wind, 10% Wind Penetration, 

and 30% Wind Penetration 

The introduction of wind power into an electricity grid increases the variability of 

the load to be met by traditional generating sources, making it harder for extant 

generators to follow the load by ramping up and down. This is shown in Figure 2 where 

the ERCOT load with no wind is plotted (dark line) for the first two days in January. Also 

plotted in the figure are the hourly loads that need to be met when wind power enters the 

grid under 10% and 30% levels of penetration. Even though Figure 2 only covers 48 

hours, it is clear that the demand after non-dispatchable wind power has been subtracted 

has greater variability than the non-wind load, although the adjusted series still track the 

morning (6 am through noon) and evening (6 pm to 11 pm) peaks quite well. Clearly, and 

as evident in the figure, a 10% penetration level does not affect net load to the same 

extent as 30% penetration, although, if a longer profile were chosen, the volatility would 

be even sharper for both penetration levels. The effect that the variability in net load has 

on system costs and CO2 emissions is considered using a simple grid management model 

(Prescott et al. 2007; Prescott and van Kooten 2009). 
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Figure 2: Load to be met by Traditional Generators for First Two Days (48 hours) in 

January 
 

The costs and benefits of introducing wind power into an electricity grid depend 

greatly on the characteristics of the electrical operating system, including the pattern of 

demand and importantly the extant generating mix (including tie-ins to other grids). To 

illustrate this, we construct an isolated grid model that employs the load and wind data 

used in Figures 1 and 2. We consider three alternative generating mixes – one that has a 

large degree of reliance on hydropower (HH), a more typical mix (TT) and a mix that 

relies mainly on fossil fuels (FF), as indicated in Table 2. These mixes roughly 

correspond to the generation mixes of Canada, the United States and Alberta. Fuel costs, 

variable operating and maintenance (O&M) costs and fixed investment costs by 

generating type are provided in Table 3. Also included in Table 3 are CO2 emissions per 

MWh by generating type, although such estimates vary greatly according to the source of 

fuel, age and type of the technology employed, capacity at which power plants operate, 

and whether they are based on a life-cycle analysis of power plant operations. 
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Table 2: Generating Mixes Normalized to 2500 MW Capacity, Three Regions 
Technology High Hydro (HH) Typical (TT) Fossil Fuel (FF)
Hydroelectric 1500 210 250
Nuclear 300 500 0
Pulverized coal 450 1250 1250
Combined-cycle natural gas 
(CCGT) 

150 450 850

Open-cycle NG (peak plant) 100 90 150
TOTAL 2500 2500 2500

 

Table 3 Cost Data for Generating Technologies 

 
Technology 

Fuel Cost 
[$/MWh]a

Variable 
O&M 

[$/MWh]a

Construction 
Cost

[$ 106/MW]b

Emissions
[kg CO2 per 

MWh]c

Hydroelectric 1.13 0.02 1.550 0.009 (0.0284)
Nuclear 6.20 0.07 1.700 0.012 (0.0147)
Pulverized coal 13.70 0.70 1.100 0.980 (1.1340)
Combined-cycle 
natural gas (CCGT) 

37.00 5.00 0.550 0.450 (0.0496) 

Open-cycle NG 
(peak plant) 

41.00 4.50 0.460 0.650 (0.0496)

Wind 0 0.17 1.300 0.015 (0.0200)
Notes: 
a Source: Natural Resources Canada (2005). 
b Source: IEA (2005) 
c Source: Summarized from Gagnon et al. (2002), Domenici et al. (2004) and Lightbucket 
(2008). Natural Resource Canada data are provided in parentheses. 
 
 
Grid Management Model 

The grid management model can be represented mathematically as a constrained 

optimization (mathematical programming) problem as follows:  

    



 



 r
rr

d

t i
itii

QQ
CFQbOMMinimizeTCMinimize

itit

24

1
,

,,

, (2)

where TC is total cost ($); i refers to a conventional generation source (viz., natural gas, 

coal, nuclear, oil, hydro); r refers to a renewable source of energy (viz., wind, solar); d is 
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the number of days (365 in our model); t is the number of hours; Qt,i is amount of 

electricity produced by generator i in hour t (MW); OMi is operating and maintenance 

cost of generator i ($/MWh); bi is the variable cost of producing electricity using 

generator i ($/MWh), which is assumed constant for all levels of output; Fr refers to the 

annualized fixed cost of introducing renewable generation capacity ($/MW); and Cr is the 

capacity of new renewable generation type r.5 In addition, we define Dt to be the demand 

or load that has to be met in hour t (MW); Ci is the capacity of generating source i (MW); 

and Ti is the amount of time it takes to ramp up production from plant i. The above 

objective function is optimized subject to the following constraints: 

Demand is met in every period (hour):   
i r

trtit dtDQQ 24...,,1,,,  (3) 

Ramping-up constraint: i
T

C
QQ

i

i
itit   ,),1(,  (4) 

Ramping-down constraint: i
T

C
QQ

i

i
itit   ,),1(,  (5) 

Capacity constraints: iCQ iit  ,,  (6) 

Non-negativity: 0, itQ  (7) 

The model is linear and assumes rational expectations (there is no uncertainty 

even regarding wind availability), so there is also no need for a safety allowance. These 

assumptions are for simplicity only (although wind power output can be forecast with a 

                                                 
5 A carbon tax can be included by adding the following term to objective (2): 

 










d

t k
ktk Q

24

1
, , where τ is a carbon tax ($ per tCO2) and φk is the amount of CO2 required to 

produce a MWh of electricity from generation source k (traditional or renewable).  
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relatively high degree of certainty) and do not in any way jeopardize the main points that 

we wish to make. Indeed, our conclusions would be all the more poignant if 

nonlinearities and uncertainty were added (see Maddaloni et al. 2008). We do however 

add two further constraints: thermal nuclear and coal-fired power plants must be kept 

running at 50% or more of their capacity to avoid shutting down base plants.  

 The cost functions represent the ranking of the marginal costs of the five power 

plants (open-cycle or peak gas > CCGT gas > coal > nuclear > hydroelectric). The 

ramping constraints are meant to represent a ranking of how fast a power plant adjusts its 

production. From the fastest to the slowest, the ranking used in this model is 

hydroelectric = peak gas > CCGT gas > coal > nuclear. The model is solved for 8760 

hours representing a full year. Three scenarios are designed based on different wind 

energy penetration levels: a base case, a low (10% penetration) wind scenario, and a high 

(30% penetration) wind scenario. The base case assumes that wind energy is not currently 

used in the energy system with demand satisfied by the existing generating assets, 

depending on the generation mix that is modeled (HH, TT or FF). 

3. MODELING RESULTS 

The purpose of the simulation is to indicate potential problems with attempts to 

integrate wind power into existing networks, and the ease to which this can be done is 

related to the generation mix. Although our model employs constant marginal generation 

costs (that vary only with generation type) and simple capacity limits and ramping 

constraints, the conclusions derived from the simulation results support those of other 

researchers (DeCarolis and Keith 2006; ESB 2004; Hirst and Hild 2004; Lund 2005;  
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Nordel’s Grid Group 2000; Prescott et al. 2007; Prescott and van Kooten 2009). These 

are discussed below. 

The main electricity output and CO2 emission results are provided in Table 4. 

Despite assuming perfect foresight regarding wind availability, generators cannot adapt 

quickly enough to prevent a rise in unnecessary generation. This is not true in the HH 

mix as hydroelectric output is able to adjust instantaneously to changes in wind, as 

indicated in Figure 3(a). Nonetheless, the additional electricity produced in the TT and 

FF mixes is quite small (at most 1.1% above the no-wind scenario for the TT mix). Not 

surprisingly, the reduction in CO2 emissions is also relatively small, and largest for the 

fossil fuel mix. For 30% wind penetration, the largest reduction in emissions amounts to 

only 14.5% of no-wind emissions, while emissions are reduced by only 1.3% and 8.1% 

for the respective HH and TT mixes. Clearly, the degree to which wind power is able to 

reduce an economy’s CO2 emissions depends on the amount of hydroelectric and nuclear 

generating capacities there are in the generating mix. If wind displaces non-CO2 emitting 

hydro and nuclear power, the fewer will be the emission reduction benefits.  
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Figure 3: Effect of Wind Penetration on Output of Existing Generators, Various 
Generation Mixes 

 

The construction cost of a wind power facility ($1300 per kWh) was annualized 

using a 10% discount rate and expected duration of 25 years. This constitutes the annual 

cost of adding wind power to a generating mix. The non-wind power generation costs and 

total costs are provided in Table 5, as are costs on a per MWh basis and CO2 emissions. 

The costs of reducing CO2 emissions are determined from this information and are 

provided in Table 6. Notice that system generation costs increase the most for the HH 

mix and least for the FF mix. Likewise, the costs of reducing CO2 emissions are highest 

for the HH mix and lowest for the FF mix, with the latter nearly competitive with other 

means of reducing CO2 emissions. The main conclusion is that wind energy should only 

be considered if the desire is to reduce dependence on fossil fuels for reasons not related 

to climate change, such as energy security. This conclusion might change for an FF-type 

mix if prices of coal rise or if one were to construct an electricity grid from the ground 

up, choosing the optimal configuration of generating plants – an option that might face 

some isolated and/or developing regions. 
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Table 4: Electricity Output and CO2 Emissions by Generating Source for Different 
Generating Mixes, and 0%, 10% and 30% Levels of Wind Penetration 

Note: na means not applicable 
 

Table 5: Generating Mixes Normalized to 2500 MW Capacity, Electricity 
Generated, Costs and Emissions  

  Generating Mix 

Scenarios & High Hydro (HH)  Typical (TT)  Fossil Fuel (FF) 

Generating Output Emissions Output Emissions Output Emissions
Facility (GWh) (tCO2) (GWh) (tCO2) (GWh) (tCO2)
No Wind (Base Case)        
Hydro 8940.9 80,468 1722.2 15,500 2189.7 19,708
Nuclear 1412.9 16,955 3810.9 45,731 na na
Coal 2023.5 1,982,995 6765.0 6,629,740 9414.8 9,226,460
CCGT 5.5 2,493 85.1 38,282 777.7 349,949
Open gas 0.6 397 0.4 281 1.3 816
Wind na na na na na na
Total 12,383.4 2,083,309 12,383.7 6,729,535 12,383.4 9,596,932
         
10% Wind Penetration        
Hydro 8391.6 75,525 1636.2 14,726 2182.5 19,642
Nuclear 1389.2 16,671 3568.4 42,820 na na
Coal 2007.3 1,967,115 6535.6 6,404,935 8980.7 8,801,102
CCGT 1.9 877 57.8 26,025 626.7 282,017
Open gas 0 0 0 0 0.2 116
Wind 593.3 8,900 593.3 8,900 593.3 8,900
Total 12,383.4 2,069,088 12,391.4 6,497,406 12,383.4 9,111,777
         
30% Wind Penetration        
Hydro 7259.8 65,339 1335.0 12,015 2064.8 18,584
Nuclear 1356.4 16,277 3158.1 37,898 na na
Coal 1987.1 1,947,375 6218.5 6,094,117 8130.6 7,968,006
CCGT 0 0 26.4 11,897 417.1 187,690
Open gas 0 0 0 0 0 0
Wind 1780.0 26,700 1780.0 26,700 1780.0 26,700
Total 12,383.4 2,055,691  12,518.1 6,182,627  12,392.6 8,200,980

Item 

Non-wind electricity 
generated 

(GWh)

Non-wind 
cost 

($ mil)
Total cost 

($ mil)

Electricity 
costs 

($/MWh) 
Emissions 
(Mt CO2)

High hydro (HH)     
0% 12,383 53.3292 53.3292 4.31 2.083
10% 11,790 52.0606 87.8653 7.45 2.069
30% 10,603 50.1096 157.5234 14.86 2.056
Typical (TT)     
0% 12,383 142.8803 142.8803 11.54 6.730
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Table 6: Costs of Reducing CO2 Emissions  
Generation mix/ 
Wind penetration 

Reducing emissions per tCO2  Increase in per MWh costs 
10% 30% 10% 30%

High hydro (HH) $2,467 $3,859 73% 245%
Typical (TT) $124 $166 26% 88%
Fossil Fuel (FF) $44 $49 16% 58%

 
Finally, we consider the impact of intermittent wind on hour-to-hour operations of 

existing generators. In Figure 4, we compare the impact on base-load nuclear and coal 

plants in going from no wind to 30% wind penetration. Despite their slow reaction times, 

nuclear and coal plants do exhibit increased variability in output as wind penetrates the 

grid (Figure 4). CCGT plants (Figure 5) are also base load but are relied upon to a lesser 

extent because the model will shift any burden carried by a gas plant towards the coal and 

nuclear facilities since these need to operate above 50% of capacity. Further, the 

(constant) marginal cost of operating a gas plant is higher than that of a nuclear, coal or 

other facility (Table 3). The higher marginal cost explains why peak gas disappears 

entirely in all mixes when wind penetration reaches 30%, even though greater peaking 

capacity is generally needed as more intermittent wind enters the system (Prescott and 

van Kooten 2009). 

10% 11,798 136.0054 171.8101 14.56 6.497
30% 10,738 126.1220 233.5359 21.75 6.183
Fossil Fuel (FF)     
0% 12,383 195.0708 195.0708 15.75 9.597
10% 11,790 180.4431 216.2477 18.34 9.112
30% 10,613 156.0302 263.4440 24.82 8.201
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Figure 4: Hourly Adjustment by Base-Load Nuclear Power Plant for Typical Generating 

Mix (left) and Coal Power Plant for Fossil Fuel Generating Mix (right) 
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Figure 5: Hourly Adjustment by CCGT Power Plant for Traditional and Fossil Fuel 

Generating Mixes  

4. CONCLUDING OBSERVATIONS 

The story regarding the integration of wind energy into existing electricity grids is 
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a mixed one. There are undeniable benefits to wind power under certain conditions and in 

certain circumstances. Conditions depend to a large degree on the location of suitable 

wind sites and the availability of wind. The best sites are those located on lands where 

wind turbines least interfere with other land uses, where noise and visual externalities are 

minimal, and where the effect on wildlife is small. Sites should be scattered over a 

sufficiently large area so that they are not affected by the same weather patterns. Further, 

wind sites need to be connected to a transmission grid and, if such a grid does not exist in 

close proximity, the costs of deploying wind power become exceedingly large. Finally, 

the degree to which wind can benefit a jurisdiction, particularly in terms of reducing CO2 

emissions, depends on the extant generating mix. Success is most guaranteed when wind 

power can displace large fossil fuel (primarily coal) generating capacity.  

The presence of large-scale nuclear and hydro facilities militates against the use 

of wind to address climate change as wind power simply displaces hydroelectric and 

nuclear power, both of which have very low life-cycle greenhouse gas emissions. As our 

model indicates, the costs of reducing CO2 emissions are unacceptably large in such 

cases. A generating mix that might best be suited to greater deployment of wind farms is 

one that relies principally on fossil fuels yet has enough hydroelectric capacity to enable 

wind-generated power to be stored in hydro reservoirs. This is an issue that has not been 

explored here as it requires more detailed information than is currently available.  

What many analysts fail to consider in their enthusiasm for wind energy is the 

impact that wind has on existing base-load and peaking facilities. Results from our grid 

management model show that extant plants are negatively affected. This is likely the case 

because the extant mix of generation facilities into which wind power is introduced was 
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nearly optimal to begin with, at least for the circumstances relevant to that jurisdiction. 

Given that existing electricity grids cannot be changed overnight, it is probably prudent to 

introduce wind power into a grid at a pace that matches growth in demand and 

replacement of extant plants. Since electricity grids in many developing countries are not 

optimal, as seen by power shortages and frequent power outages, there may be greater 

benefits to the introduction of wind power in developing countries than developed ones. 

An alternative policy is to make wind power dispatchable by requiring wind 

operators to reduce output (by ‘feathering’ wind turbines or simply stopping blades from 

rotating) whenever the grid operator is unable to absorb the extra electricity. In this case, 

output from base-load plants is effectively given precedence over wind generated power 

because such plants cannot be ramped up and down, the ramping costs are too great, 

and/or excess power cannot be stored or sold. This policy makes investments in wind 

farms less attractive, while environmentalists oppose any policies that curtail wind 

generation as this is considered ‘wasteful’ of a renewable resource. 
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