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ABSTRACT

KEYWORDS: Complexity Theory, Non-monotone Circuits, Depth Lower-

bounds, Learning Non-monotone Circuits, Branching Pro-

grams, Projective Dimension, Size Lowerbounds

Two central resources of computation in complexity theory are time and space.

We study central problems about these resources using combinatorial models of

computation. We first study Boolean circuits a combinatorial model of compu-

tation which captures parallel time needed for computation. And then we study

branching programs, another combinatorial model of computation, which captures

space needed for computation.

We first study depth lower bounds against non-monotone circuits, parametrized

by a new measure of non-monotonicity: the orientation of a function f is the char-

acteristic vector of the minimum sized set of negated variables needed in any

DeMorgan circuit (circuits where negations appear only at the leaves) computing

f . We prove trade-off results between the depth and the weight/structure of the

orientation vectors in any circuit C computing the CLIQUE function on an n vertex

graph. We prove that if C is of depth d and each gate computes a Boolean function

with orientation of weight at most w (in terms of the inputs to C), then d×w must be

Ω(n). In particular, if the weights are o( n
logk n

), then C must be of depthω(logk n). We

prove a barrier for our general technique. However, using specific properties of the

CLIQUE function (used in Amano Maruoka (2005)) and the Karchmer–Wigderson
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framework (Karchmer Wigderson (1988)), we go beyond the limitations and ob-

tain lower bounds when the weight restrictions are less stringent. We then study

the depth lower bounds when the structure of the orientation vector is restricted.

Asymptotic improvements to our results (in the restricted setting) separates NP

from NC. As our main tool, we generalize Karchmer–Wigderson games (Karch-

mer Wigderson (1988)) for monotone functions to work for non-monotone circuits

parametrized by the weight/structure of the orientation. We also prove structural

results about orientation and prove connections between number of negations and

weight of orientations required to compute a function.

Using characterization of minimal orientation of a function, and the learning

algorithm of [BCO+15a] we come up with a learning algorithm under the uniform

distribution membership query model for learning n variable functions computed

by Boolean circuits whose weight of orientation is at most w to error ε in time

nO(w
√

n/ε). [BCO+15a] prove a near matching learning lower bound for a fam-

ily functions H k of balanced k(n) alternating functions Using characterization of

orientation, we show that this family of functions H k has minimal weight of ori-

entation equal to the number of inputs. Based on the techniques employed in the

lower bound of [BCO+15a], the hardness amplification of learning composition of

functions based on a Fourier analytic property Expected Bias ([FLS11], [O’D04]),

we come up with information theoretic noise model tailored for sparse orienta-

tion. Based on the intuition behind the noise model we prove a theorem which

supports expected bias as the right parameter for studying hardness amplification

under composition of certain class of functions. We also state a conjecture based

on this intuition for hardness amplification under composition of functions based

on the noise model. We also state open problems whose solution along with the

conjecture would yield lower bounds for learning sparsely oriented circuits.
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We then study branching program lower bounds using projective dimension,

a graph parameter (denoted by pd(G) for a graph G), introduced by Pudlák and

Rödl (1992). For a Boolean function f (on n bits), Pudlák and Rödl associated

a bipartite graph G f and showed that size of the optimal branching program

computing f (denoted by bpsize( f )) is at least pd(G f ) (also denoted by pd( f )).

Hence, proving lower bounds for pd( f ) imply lower bounds for bpsize( f ). Despite

several attempts (Pudlák and Rödl (1992), Rónyai et.al, (2000)), proving super-

linear lower bounds for projective dimension of explicit families of graphs has

remained elusive. We observe that there exist a Boolean function f for which

the gap between the pd( f ) and bpsize( f )) is 2Ω(n). Motivated by the argument in

Pudlák and Rödl (1992), we define two variants of projective dimension - projective

dimension with intersection dimension 1 (denoted by upd( f )) and bitwise decomposable

projective dimension (denoted by bpdim( f )). We show the following results :

(a) We observe that there exist a Boolean function f for which the gap between
upd( f ) and bpsize( f ) is 2Ω(n). In contrast, we also show that the bitwise
decomposable projective dimension characterizes size of the branching pro-
gram up to a polynomial factor. That is, there exists an 0 < ε < 1 such that
for any function f ,

bpdim( f )/6 ≤ bpsize( f ) ≤ (bpdim( f ))3+ε

(b) We introduce a new candidate function family f for showing super-polynomial
lower bounds for bpdim( f ). As our main result, we demonstrate gaps be-
tween pd( f ) and the above two new measures for f :

pd( f ) = O(
√

n) upd( f ) = Ω(n) bpdim( f ) = Ω
(

n1.5

log n

)
(c) Although not related to branching program lower bounds, we derive expo-

nential lower bounds for two restricted variants of pd( f ) and upd( f ) respec-
tively by observing that they are equal to well-studied graph parameters -
bipartite clique cover number and bipartite partition number respectively.
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CHAPTER 1

Introduction

Complexity theory is a branch of theoretical computer science which studies in-

herent limits of computation by placing bounds on important resources of com-

putation like time, space etc. Such a theoretical study is built on the foundation

of a robust mathematical model of computation, which is simple yet elegant, of

Turing [Tur36] called “Turing machines”. This formalization of computing is so

fundamental that it not only models, what we think is computable, but also models

what is efficient to compute in an asymptotic sense. The abstraction allows one

to ignore the specifics of the implementation of real computer like speed of the

processor or the storage size. But it comes with the caveat that the abstraction

captures the notion of efficiency only asymptotically. That is, it only captures the

asymptotic growth of resource requirements as a function of input length. But this

problem turns out to be more of a boon than a curse as this makes the definition

of efficiency robust and independent of the specifics of the implementation of an

actual computing device. And this notion of asymptotic growth is required as we

do not want to build a theory of computation which classifies problems as efficient

or not based on the current technology. As it is evident from history, computation

power and resources has been growing at an almost exponential rate (see Moore’s

Law [BM06]). Also, most of the algorithms which are efficient asymptotically are

also efficient in practice. But more importantly, for the natural problems we would

like to solve but have been unable to, we do not know efficient algorithms even in

the asymptotic sense.



Two major resources of computation which are interesting from both practical

and theoretical view points, are time and space. In this thesis, we study central

problems in complexity theory related to both of these resources.

We will first talk about time as a resource. A robust notion of efficient time for

computation, as suggested by Edmonds [Edm65], is the class P. Class P is a set of

problems which can be solved on a computer (more formally a Turing machine)

within fixed polynomial time of the input length. This class encompasses many

natural problems like sorting a given set of n numbers. An interesting class of

problems which are believed to be not all of P is the class of problems which have

efficient parallel solutions. This class and its relation to P is naturally an important

question in complexity theory. And it is even more interesting for the fact that this

problem can be stated as a problem about a combinatorial model of computation,

called Boolean circuits. Such a model of computation is deemed helpful in settling

questions about computation as it brings about tools from combinatorics.

An interesting class of problems which are not known to be in P, but nonetheless

is very important in terms of both theory and practice is the class NP. An example

of a problem in class NP is the problem CLIQUE(n, k), which given an undirected

graph on n vertices, asks whether there is a k-clique, i.e., a set of k vertices in which

every pair of vertices is connected by an edge. It is not known how to search for

existence a k-clique in a given graph in polynomial time for large values of k like

k = n/2. But given an input instance, i.e., an undirected graph G, and a set of

k vertices of G as a candidate certificate for a k-clique in G, it can be verified in

polynomial time whether these vertices form a k-clique or not.

Class NP abstracts languages which are hard to solve, but for which for any

input, given a certificate of membership of polynomial size in the input, it can be
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verified in polynomial time whether it is valid certificate of membership. And also

for inputs which are in the language there is always a certificate of polynomial size

certifying the membership of the input. The general definition of class NP is thus

the set of all problems which have an efficient certificate (i.e., a fixed polynomial

in input size) and given such a certificate its validity can be verified in polynomial

time. This class of problems is modeled using the notion of non-determinism in

computation. More formally, NP corresponds to the class of problems solvable

in non-deterministic polynomial time on Turing machines, as a polynomial size

certificate can be guessed using non-determinism in non-deterministic polyno-

mial time, and then it can be verified whether the non-deterministically guessed

certificate is valid or not in deterministic polynomial time. A central problem in

complexity theory is to understand the power of non-determinism and its relation

to efficient deterministic computation. It is widely believed that class NP different

from class P, i.e., there are problems which can be solved in polynomial time using

non-determinism but which cannot be solved in deterministic polynomial time.

Very little progress has been made towards settling this central problem. It is not

even known if hard problems in NP do not have efficient parallel algorithms. But

there is good reason to believe that NP is different from P. In fact, we know that

if NP is indeed equal to P, many complexity classes which are believed to be sep-

arate would collapse on to one another. Scott Aaronson has recently published a

detailed survey ( [Aar17] ) of the P vs NP problem which includes recent progress

on the problem and also why P is believed to be different from NP.
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1.1 Circuit depth and the P vs NC problem

In the early 90’s a lot of progress was made towards separation of NP from efficient

parallel time by studying a combinatorial model of computation called Boolean

circuits. This sub-area of complexity theory is called circuit complexity. And it

models computation as Boolean circuits, a non-uniform model of computation. A

Boolean circuit is a directed acyclic graph (DAG) with a designated node called the

root node. The in-degree of each node in the circuit is called fan-in and out-degree

of each node in the circuit is called fan-out. The root node has fan-out 0. A node

which has in-degree 0 is called a ”leaf”. Every node which is not a leaf node is called

an internal node. A node u is said to be the child of a node v if there is a directed

edge from u to v. The leaf nodes of the circuit are labeled by input variables {xi}i∈[n].

Every internal node is labeled by a Boolean function f : {0, 1}r → {0, 1} from a set

of allowed functions called basis of the circuit, where r is the fan-in of the node.

The function computed by a circuit is recursively defined. The function computed

by a leaf node is the variable xi where xi is the label of the node. The function

computed by an internal node is the function f applied to the functions computed

by its child nodes, where f is the function labeling the current node. The Boolean

function computed by the circuit is the function computed by the root node. One

of the central complexity resources associated with a circuit is its size, which is the

number of nodes in the given circuit. It is a non-uniform model of computation as a

specific circuit is defined over a certain number of inputs, and hence by definition of

the model there are different circuits for different input lengths. A Boolean function

f is said to be computed by a family of circuits C = {Cn}n>n0,n∈N if there exists an

n0 ∈ N such that for any n > n0 the nth slice of f , fn : {0, 1}n → {0, 1} is computed by

Cn. This is unlike the description of a Turing machine which has a single uniform
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description for all input lengths. It is also not necessary that there is an algorithm

(or more formally a single Turing machine) producing the description of the circuit

given the input length. This non-uniformity adds certain strange powers to the

circuit like the ability to compute all sparse languages, including the unary halting

problem which is not even computable by Turing machines.

But despite this power of non-uniformity, unless certain complexity classes

which are believed to be separate collapse to one another, it is known ([KL82])

that NP-hard problems like CLIQUE(n,n/2) cannot be computed by a family of

poly-sized circuits. Poly-size circuits are represented by the class P/poly. If it

can be shown that NP is separate from P/poly then it would also separate NP

from P. This is because every polynomial time Turing machine can be converted

to a polynomial sized circuit, implying that P ⊆ P/poly. Circuit complexity is

deemed hopeful for proving such lower bounds, as it is a combinatorial model

of computation and allows us to use a vast array of techniques and tools from

combinatorics. This hope was justified by early circuit lowerbounds, the like of

[Raz85a] which used the Sunflower lemma ([ER60]) from combinatorics to prove

circuit lower bounds.

A central resource of a Boolean circuit is its depth. Formally, depth is the length

of the longest path from the output of a circuit to any of its inputs. Intuitively depth

captures “parallel time” in Turing machines. Formally, it is known that depth of a

circuit corresponds to time taken by a model of parallel computation called CREW

PRAM ([J9́2]). Intuitively, this is because if every node is considered as a processor

and abstracts the computation time taken at a node to be a unit, then the longest

time a node has to wait till its children produce inputs is at most the depth of the

node.
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The notion of “efficient parallel time” in circuits where internal nodes have

bounded fan-in is captured by poly-logarithmic depth and polynomial size. This

class of circuits are denoted by NC. Since NC ⊆ P/poly it is believed that NP * NC.

It is also believed that there are problems in P which do not have “efficient parallel

algorithms”. Thus, it is even believed that P * NC. There are “complete” (i.e.,

problems which are in P and such that every other problem in P can be reduced

to an instance of this problem) problems for P, and they are not believed to be

in NC. There is an interesting subclass of NC which models “truly efficient”

parallel algorithms. This is the class NC1 of polynomial sized, bounded fan-in

and logarithmic depth circuits. There are problems which are not believed to be P

complete, like Perfect Matching, which are in NC but are believed not to be in NC1.

The perfect matching problem asks whether given an undirected graph is there a

set of edges such that any vertex in the graph appears as an end point of exactly

one edge in the set. Though such problems are believed to separate NC from NC1,

we do not yet know of any separation between, even NP and NC1.

1.1.1 Limited negation circuits

In the early 90’s a lot of progress was made towards proving lower bounds against a

restricted class of circuits called monotone circuits ([Raz85a, Raz85b, KW88, RW92]).

A circuit is said to be monotone if all its internal gates are either AND gates or OR

gates, and they do not have NOT gates. These circuits compute Boolean functions

which are monotone, i.e., functions whose value does not decrease when input

bits are changed from 0 to 1. If the undirected adjacency matrix of a graph is

given as the input, changing an input bit from 0 to 1 is equivalent to adding the

corresponding edge in the graph. Thus, the CLIQUE(n, k) function, which is NP-

7



complete for large k, is a monotone function. This is because adding edges cannot

remove an existing clique. Monotone circuits do not allow NOT gates and can

intuitively be thought of as representing computation without cancellations. An

equivalent definition of a monotone circuit is that it is a circuit where every sub-

circuit rooted at a gate computes a monotone function. Razborov [Raz85a] in his

seminal lower bound proved that monotone circuits computing the CLIQUE(n, k)

function requires size Ω(nk) for any k ≤ log n. Later Alon and Boppana ([AB87])

extended it to a truly exponential size lower bound for the clique function by

proving that detecting cliques of size (1/4)( m
log m )2/3 in an m-vertex graph requires

monotone circuits of size exp(Ω(m/ log m)1/3).

One natural way to extend these lower bounds for monotone circuits to gen-

eral circuits is to study circuits where the non-monotonicity is limited. Since

monotone circuits are circuits without negation gates, a natural measure which

parametrizes the amount of non-monotonicity in the circuit is the number of nega-

tion gates allowed in the circuit. Markov ([Mar58]) established that it is indeed

a robust measure of non-monotonicity by proving that the minimum number of

negations needed to compute a Boolean function is the property of the function

under consideration. Markov ([Mar58]) proved that for a given Boolean function

f : {0, 1}n → {0, 1}, the minimum number of negations needed to compute the func-

tion is independent of any circuit computing the function. He called this number

the inversion complexity of a Boolean function and proved that for bounded fan-in

circuits, it only depends on the function’s non-monotone behavior on the hyper-

cube, and is independent of the actual circuit computing it. In particular he proved

that the inversion complexity of f denoted by I( f ) is well defined and is equal to

d(log(a( f ) + b))e − 1 where b = 1 if f (0n) = 0 and b = 2 otherwise [Mar58]. The

measure a( f ) is a property of the function and is equal to the maximum number
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of times the functions value changes from 1 to 0 on any chain of the hypercube. In

2005, Amano and Maruoka [AM05] showed how to extend the super polynomial

size lower bound of Razborov to circuits with limited non-monotonicity. They

parametrized non-monotonicity by the maximum number of NOT gates allowed

in the circuit. They proved that any circuit computing CLIQUE(n,n/2) with at

most 1
6 log log n negations requires super polynomial size. They used a combina-

torial argument called monotone covering and combined it with Razborov’s size

lower bound. From a well known result of Fischer ([Fis75]) it is known that if a

function is computed by a poly-size, log-depth circuit then it is also computed a

circuit of poly-size, log-depth and at most log n negations. Hence to separate NP

from P/poly it is enough to extend the lower bound of Amano Maruoka to log n

negations.

Razborov also proved a super polynomial size lower bound [Raz85b] against

monotone circuits computing perfect matching problem (denoted by PMATCH).

Razborov’s lower bound implied that no polynomial sized, poly-log depth mono-

tone circuit can compute PMATCH. But it was left open whether super-polynomial

sized monotone circuits of poly-log depth can compute PMATCH. Eva Tardos

([Tar88]) established a truly exponential size lower bound against monotone cir-

cuits computing a function which is in P. Thus, she settled the question by estab-

lishing a truly exponential gap between monotone circuit size and general circuit

size. But the such a separation for monotone depth and general circuit depth was

not known. This problem was later settled in the negative by a series of works by

Karchmer, Raz and Wigderson ([KW88, RW92]) who proved that monotone circuits

computing CLIQUE(n,n/2) and PMATCH requires linear depth. This is an inter-

esting result as this gives hopes of proving limited non-monotonicity depth lower

bounds against even functions in P for which we do not know exponential mono-
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tone circuit size lower bounds. Note that to get a super poly-logarithmic depth

lower bound for a function using the framework of Amano Maruoka [AM05], one

needs to prove exponential size lower bounds against monotone circuits comput-

ing that function. But for a function like PMATCH such a lower bound is not

known. Hence a depth lower bound which does not depend on size lower bounds

can potentially give depth lower bounds against “limited non-monotone circuits”.

Raz and Wigderson ([RW92]) proved the linear depth lower bounds on CLIQUE(n,n/2)

and PMATCH using a bridge between circuit complexity and communication

complexity called Karchmer Wigderson relations, introduced by Karchmer and

Wigderson ([KW88]). The Karchmer Wigderson relation related to a Boolean func-

tion f : {0, 1}n → {0, 1} captures the minimal depth of any circuit computing f . In

this relation there are two players Alice and Bob who are given inputs x ∈ f −1(0)

and y ∈ f −1(1) respectively, and the objective of the players is to output an index

i ∈ [n] such that xi , yi. The communication complexity of the best deterministic

protocol solving this relation is equal to the circuit depth of the function f . The

communication complexity of a deterministic protocol is the maximum number

of bits communicated by the protocol over any input to the protocol. For mono-

tone functions f , they also defined a relation which captures the monotone circuit

depth of f . It is communication complexity of the best deterministic protocol

where players Alice and Bob are given inputs x ∈ f −1(0) and y ∈ f −1(1) respec-

tively, and the goal is to output an index i ∈ [n] such that xi = 0, yi = 1. The

linear lower bounds for depth of CLIQUE(n,n/2),PMATCH is obtained by re-

ducing the famous DISJn problem to the monotone Karchmer Wigderson relations

corresponding to CLIQUE(n,n/2) and PMATCH.

But despite this initial enthusiasm and some great results on restricted class of
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Boolean circuits the progress towards original general questions has been almost

stagnant. Complexity theorists have been able to explain the lack of progress

by showing the impossibility of separating P and NP using current tools and

techniques. More specifically Razborov and Rudich ([RR97]) showed that even

separating NP and NC is beyond the reach of current techniques. They called the

limitation of these techniques the ”Natural proofs” barrier and defined what does

it mean for a circuit lower bound proof to be “natural”. They [RR97] showed that

the celebrated exponential size lower bounds against monotone circuits and small

depth circuits like the exponential size lower bound for constant depth unbounded

fan-in circuits computing the parity function ([Smo87, Raz87]) over ∧,∨,¬ basis

are all “natural” proofs. They showed that unless sub-exponential strong one-way

functions do not exist, these natural proofs cannot prove super polynomial lower

bounds against many classes of circuits like NC1 which are believed to contain

such one-way functions. A one-way function is a function which can be evaluated

in polynomial time given an input, but it is such that it is hard to invert. That

is, given an evaluation it is hard to come up with an input to the function on

which the function achieves the given evaluation. A one-way function is said

to be sub-exponentially strong if it is hard to invert it in sub-exponential time.

This ruled out the initial optimism of separating NP from P/poly using proofs and

techniques which are natural. The assumption Razborov and Rudich make, which

would be violated if there are “natural” proofs showing super polynomial lower

bounds for a circuit class C, is that there are hard (even by sub-exponential time

procedures) to invert one way functions in C. It is widely believed that there are

sub-exponentially strong one way functions even in small circuit classes like NC1.

A famous example which is believed to be a one way function in P/poly is the

factoring problem, which given two primes outputs their product. The hardness
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of inverting this function is the heart of many cryptographic breakthroughs like

RSA encryption scheme of [RSA78].

There are two fundamental ways to making progress towards frontier questions

in circuit complexity. One is to come up with new combinatorial measures such

that there is a potential of proving better lower bounds for certain resources. The

other is to modify and strengthen existing measures and/or improve lower bounds

against these measures. But given a barrier like “natural” proofs, it is important

that the lower bound techniques which we use for these measures are non-natural

or at the very least techniques which are not believed to be “natural”. In the first

part of the thesis we come up with an alternate measure for parameterizing non-

monotonicity in Boolean circuits which is tailored towards depth lower bounds.

We then prove lower bounds for circuits which have limited non-monotonicity

under this measure, using a technique not known to be natural. We also study

the associated learning problem for learning circuits which have low monotonicity

under this measure, using the properties of the measure we introduce. We could

obtain learning algorithms for this problem. However we could not prove an

optimality of our result. Towards this goal, we come up with a noise model for

studying hardness amplification of learning functions tailored for our measure

and outline a strategy using this noise model.

In the second part of the thesis, we study an approach for proving lower

bounds for branching programs which is another combinatorial model of compu-

tation which captures space in Turing machine. Since polynomial sized branching

programs can compute any function in NC1, the natural proof barrier for P vs

NC1 applies for super polynomial lower bounds against deterministic branching

programs also. We consider a method from the 90’s devised by Pudlák and Rödl
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[PR92] which is also not known to be “natural”. The method is based on an alge-

braic/combinatorial parameter associated with the Boolean function called Projec-

tive dimension which the authors show is upper bounded by branching program

size. Though their method brings in more tools from algebra and combinatorics

to tackle the lower bound problem for branching programs, the best lower bound

obtained using their method is only linear in input size. We explain this situation

by showing an exponential gap between their measure and branching program

size. We remedy this situation by defining a variant of projective dimension which

captures branching program size up to polynomial factors.

1.1.2 The depth lower bound for limited non-monotone circuits

In Chapter 3 we extend these depth lower bounds from monotone circuits to

limited non-monotone circuits. The amount of non-monotonicity of a circuit is

measured by a new measure we introduce called orientation. A generalization of

monotone functions is studied under the name unate functions (see [IPS97]). We

inherit the terminology of orientation from that setting. But we remark that our

definition is universal unlike the case of unate functions. Unlike the number of

negation gates in a circuit, orientation of a circuit is a semantic measure. We first

define orientation of a function and extend the definition to circuits. A Boolean

function f is said to be of orientation w if there is a circuit computing f with at

most w leaf negations (i.e., all the NOT gates are fed by inputs alone). A circuit

C is said to be of orientation w, if the Boolean functions computed by every sub-

circuit (decided by rooting at an arbitrary internal gate) is of orientation w. Recall

that a monotone circuit is a circuit where every sub-circuit computes a monotone

function. We first study the structural properties of orientation and prove that it
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is a property of the Boolean function f under consideration. And the minimum

orientation w of f is achieved only by placing negations on a unique set of w input

variables which are decided by the non-monotone hyper edges of the function.

We then proceed to prove interesting properties of “orientation” in terms of

circuit size and depth. We show the usefulness of “orientation” by exhibiting a

function (non-explicit) which has poly-size log depth circuits computing where

only two internal gates compute non-monotone functions. But any monotone

circuit computing this function requires super-poly-logarithmic depth.

Our main result which appears in Chapter 3 is super-logarithmic depth lower

bounds for CLIQUE(n,n/2) and PMATCH against circuits of orientation O(
√

n
log1+ε n

).

Note that general circuits can have maximum orientation n. The main idea behind

our proof is to use the w-orientation circuit C to solve the monotone Karchmer

Wigderson game at a cost which is constant multiple of depth d times the orienta-

tion w. Since an O(dw) cost monotone Karchmer Wigderson protocol corresponds

to a monotone circuit of depth O(dw) [KW88], we get a trade-off between ori-

entation w of a circuit and its depth based on the best monotone depth lower

bounds known for the given function. Thus, our method doesn’t require a super-

polynomial size lower bounds to begin with and works for any function for which

super-poly-log depth lower bounds are known.

Since our measure is tailored towards the top-down approach of Karchmer

Wigderson games [KW88], it is interesting to see how it interacts with a bottom-up

approach of Razborov [Raz85a] and Amano Mauroka [AM05]. In this direction we

consider a circuit family computing CLIQUE(n,n
1

6α ) with ` + k negations, where

` ≤ 1/6 log log n, α = 2`+1
− 1 and at most k negations are computing functions

which are sensitive on w inputs with kw < n/8 and the remaining ` negations
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may have arbitrary orientation. We prove such a circuit family must have depth

n
1

2`+8 . Thus we go beyond the limitation of our method to handle internal gates

of orientation Ω(
√

n) by obtaining super-poly-logarithmic lower bounds when

there are only a few negations of “high” orientation. We do this using the specific

properties of CLIQUE(n, k) and the Amano Maruoka’s method [AM05] of proving

limited negation lower bounds.

We also consider a setting of orientation where we obtain near matching lower

and upper bounds, and where even a slight improvement in the lower bound

would answer the NP vs NC question. A circuit is said to be of uniform orientation

w if there is a specific subset R ⊆ [n], |R| = w such that every sub-circuit com-

putes a function which can be computed by a circuit which uses leaf negations on

variables only from R. In this setting we proved that any circuit which computes

CLIQUE(n,n/2) and for which there is a subset of vertices S of cardinality ω(log n)

such that any edge whose both end points are in S does not belong to the uniform

orientation set R of the circuit C, must have depth ω(log n).

We also proved that such a structural assumption can “almost” be assumed

without loss of generality. Specifically we proved that, any circuit C computing

CLIQUE(n,n/2) of depth O(log n) can be transformed to another circuit C′ of

uniform orientation and of depth O(log n) which has a subset U of vertices which

satisfy the above criteria (i.e., none of the edges whose end points in U are in the

uniform orientation set R) but U has size only θ(log n). Thus, if either our upper

bound or lower bound on |U| is improved by a logε n factor for any ε > 0 we would

be able to separate NP from NC.
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1.2 Learning problem associated with orientation

Learning theory is the area of theoretical computer science which models and

rigorously studies various learning tasks. One of the central themes of learning

theory is to learn Boolean functions or, as it is known in the learning community,

to learn concepts. The main idea is that there is an unknown function called

the concept, say f : {0, 1}n → {0, 1} that we would like to “learn”, using minimal

number of queries to f of the which are evaluations of f at various inputs called

training data, up to an error parameter ε called “accuracy”. To learn f up to

accuracy ε is to come up with the description of another Boolean function called

“hypothesis” denoted by h, so that a probability that h agrees with f on an x chosen

under the distribution from which the learning algorithm was allowed to query f ,

is at least 1 − ε.

Learning monotone functions are of great interest to learning theory. The

learning under uniform distribution model has been well studied for monotone

functions, where queries are made to f by sampling an x uniformly at random from

{0, 1}n. In a seminal paper, Bshouty and Tamon [BT96] proved that any monotone

Boolean function can be learned from uniform random samples to error ε in time

nO(
√

n/ε).

Motivated by the robustness of inversion complexity defined by Markov ([Mar58])

and well known lower and upper bounds for learning monotone functions Blais

et. al ([BCO+15a]) studied the learning problem for functions computed by circuits

with a few negation gates. The proved matching upper and lower bounds for this

problem. The learning algorithm for learning functions computed by circuits with

a limited number of negation gates is based on an alternate characterization of

inversion complexity of f they establish. The matching lower bounds are based
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on hardness amplification for learning based on [FLS11].

The measure of non-monotonicity we introduced, orientation, is also a robust

measure. This is because weight of minimal orientation of a function is inde-

pendent of the circuit computing it. Motivated by this and since orientation is

also a generalization of monotone functions which have been useful in obtain-

ing depth lower bounds, we study the uniform distribution learning problem for

functions which have limited weight of orientation. Based on our characterization

of minimal orientation of a Boolean function, we obtain a learning algorithm for

functions computed by circuits of limited weight of orientation. Our algorithm

is a direct corollary of the learning algorithm of Blais et. al ([BCO+15a]) and our

characterization of orientation.

Next we detail why the learning lower bound of [BCO+15a] et. al doesn’t work

to give learning lower bound for limited orientation functions. Since composing

an arbitrary non-monotone function with a monotone function can result in a

composed function of arbitrary high weight of orientation we come up with a

strategy of hardness amplification similar to that of [FLS11], where we study

the composition of a monotone function f with two functions g, h where g is a

monotone function and h is function of high weight of orientation. We come up

with an information theoretic noise model, similar to that of [O’D04], and show

Expected Bias under this noise model as the right parameter for studying the

composition for certain family of top functions, like REC-3-MAJORITY. Based on

this intuition we also state a conjecture on hardness amplification of learning a

specific composition of functions tailored for sparse orientation.

Though we are unable to obtain a learning lower bound for limited orientation

functions, we conclude the chapter with important open problems which when
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solved, assuming the conjecture, would give such a lower bound but are also of

independent interest in Fourier analysis.

1.3 Branching programs and the P vs L problem

In the next part of the thesis, we try the second approach, that is to modify existing

combinatorial measures to bring them closer to the computation model. Branching

programs are a combinatorial model of computation which abstracts space used

in deterministic computation. As discussed earlier one of the central problems of

complexity is to understand the relationship between efficient time and efficient

space. The efficient time is represented by polynomial time P and efficient space

is represented by logarithmic space, L. Though it is known that L ⊆ P, we do not

yet know if L , P.

A combinatorial model of computation which models space in Turing ma-

chines is called Branching programs. Unlike circuits which are a “parallel” model

of computation branching programs are a “sequential” model of computation. A

deterministic branching program is an acyclic graph. An important complexity

measure associated with branching programs is its size which is the number of

vertices in the branching program. When a space S bounded deterministic Turing

machine is converted to a branching program the resulting branching program’s

is of size 2O(S). Because of this connection between logarithm of the size of the

branching program and the space used in deterministic Turing machines, to sepa-

rate P from L it is enough to show a super polynomial lower bound for a function

in P against deterministic branching programs.

One of the early lower bounds on branching program size was proved by
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Nechiporuk ([Nec66]) in the early 70’s. He proved a lower bound of Ω( n2

log2 n
)

on the deterministic branching programs computing a function which was in L.

Proving better branching program size lower bounds is an important problem

and hard one at it too. This is best explained by the fact that the best known

lower bound on deterministic branching program size, without any additional

restrictions like width, is the lower bound of Nechiporuk from the 70’s.

1.3.1 Projective dimension

To prove better lower bounds it helps to bring in more combinatorial structure to

the of study branching program size. Pudlak and Rodl ([PR92]) in achieved this

by introducing a combinatorial/algebraic parameter called Projective dimension

which is associated with branching program size.

The linear algebraic parameter they introduced, projective dimension (denoted

by pdF( f ), over a field F), is defined on a natural graph associated with the Boolean

function f . For a Boolean function f : {0, 1}2n
→ {0, 1}, fix a partition of the input bits

into two parts of size n each, and consider the bipartite graph G f (U,V,E) defined

on vertex sets U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if f (uv) = 1. The

projective dimension of the graph G f (or any graph in general) denote by pdF(G f ),

is defined as the smallest d for which there is a vector space W of dimension d

(over F) and a function φ mapping vertices in U,V to linear subspaces of W such

that for all (u, v) ∈ U × V, (u, v) ∈ E if and only if φ(u) ∩ φ(v) , {0}. The strength of

this approach is that it bring in more algebraic structure to the pursuit of the lower

bound question on branching program size.

Pudlák and Rödl [PR92] showed that if f can be computed by a deterministic

branching program of size s, then pdF( f ) ≤ s over any field F. The proof establishes
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this connection by producing a subspace assignment using the branching program

computing f . Thus, in order to establish size lower bounds against branching

programs, it suffices to prove lower bounds for projective dimension of explicit

family of Boolean functions.

By a counting argument, Pudlák and Rödl in [PR92] showed that for most

Boolean functions f : {0, 1}n × {0, 1}n → {0, 1}, pdR( f ) is Ω(
√

2n

n ). In a subsequent

work, [PR94] also established an upper bound pdR( f ) = O(2n

n ) for all functions.

More recently, Rónyai, Babai and Ganapathy [RBG02] established the same lower

bound over all fields. Over finite fields F, Pudlák and Rödl [PR92] also showed (by

a counting argument) that there exists a Boolean function f : {0, 1}n×{0, 1}n → {0, 1}

such that pdF( f ) is Ω(
√

2n). However, till date, obtaining an explicit family of

Boolean functions achieving such lower bounds has remained elusive.

The best lower bound for projective dimension for an explicit family of functions

is for the inequality function (on 2n bits, the graph is the bipartite complement of

the perfect matching) where a lower bound of εn for an absolute constant ε > 0

is known [PR92] over R. However, the best known size lower bound that was

achieved using this framework is only Ω(n) which is not better than trivial lower

bounds.

1.3.2 Characterizing branching program size using a variant of

projective dimension

The approach of Pudlák and Rödl also has the extra advantage that it is also

not known to be natural. But using their bridge no one has been able to prove

even super-linear lower bounds for branching programs. We address this issue
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by proving a stronger connection between branching programs and projective

dimension. This is done by defining a variant of projective dimension which

captures branching program size up to polynomial factors. Hence any super

polynomial lower bounds translates to a super polynomial lower bound for our

measure and vice versa. We then continue to show the potential of this approach

by showing the best known branching program size lower bound for our variant

of projective dimension. This is despite the fact that the equivalence we establish

between branching program size and our variant of projective dimension loses a

polynomial factor. Also, the lower bound we prove on the branching program

size using our variant of projective dimension is only super-linear and not super-

polynomial and hence natural proofs barrier do not limit such results.

We also propose a candidate function for proving super-polynomial branching

program size lower bounds using this approach.

1.4 Structure of the Thesis

In Chapter 2 we discuss the preliminaries needed for the rest of the thesis. We intro-

duce our new measure of non-monotonicity, orientation, and discuss its properties

and associated depth lower bounds in 3. Motivated by the robustness of orien-

tation, we study the learning problem associated with sparsely oriented circuits

in Chapter 4. In Chapter 5, we strengthen the approach of Pudlák and Rödl for

proving branching program lower bounds using projective dimension by coming

up with a variant of projective dimension which characterizes branching program

size up to polynomial factors and show the potential of this variant for proving

branching program size lower bounds.
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CHAPTER 2

Preliminaries

In this chapter, we discuss basic definitions and prerequisites needed for the re-

maining chapters. In Section 2.1 we define Boolean circuits and related complexity

classes. We also discuss limited negation circuits and Karchmer-Wigderson re-

lations in this section. In the next section, Section 2.2 we define the model of

branching programs. And then we outline Nechiporuk’s sub-function counting

technique for proving branching program lower bounds. We finish the section by

discussing about graph complexity and projective dimension based approach for

proving Branching program lower bounds outlined by Pudlák and Rödl .

2.1 Boolean circuits

A Boolean circuit is a directed acyclic graph (DAG) with a designated root node.

Every internal node is labeled with a Boolean function f of its inputs which is

either ∧,∨ or ¬ and the edges are called wires. Every leaf node is a labeled by

an input index. The Boolean function computed by the circuit is the function

computed by the root node. Since the leaves have to be labeled by input bits, a

circuit is defined for a specific input length. Thus, a family of Boolean functions

F =
{
fn : {0, 1}n → {0, 1}

}
n∈N is computed by a family of Boolean circuitsC = {Cn}n∈N,

i.e., one circuit for each slice of the Boolean function defined by the input length.

The fan-in of a node in a circuit is the in-degree of the node, i.e., the number

of nodes which have directed edge from them to the node under consideration.



Similarly, fan-out of a circuit is its out-degree which is the number of nodes the

node under consideration is feeding into. A fan-out 1 circuit is a circuit where all

internal nodes have fan-out 1, and is called as Formula. Basically formulas are

circuits where the underlying DAG is a tree. Formulas represent computations

where a partially computed result cannot be reused. A circuit family C = {Cn}n∈N

is said to be a bounded fan-in if there is constant c ∈ N such that all internal nodes

of the circuits in the family have fan-in at most c. The basis of a circuit family C is a

family of Boolean functions B such that all internal nodes are labeled by function

from withinB. A classical example of a basis is the fan-in 2 basis of 2-bit AND and

OR gates and 1-bit NOT gate represented by ∧,∨ and ¬ respectively. This basis

is called a universal basis, as any Boolean function can be computed by a circuit

family defined over this basis alone. In this thesis, unless explicitly mentioned

otherwise, we would be working with bounded fan-in circuits over the fan-in 2,

∧,∨ and ¬ gates.

We also consider De-Morgan circuits in this thesis. A De-Morgan circuit is a

circuit where all the¬ gates appear on the leaves of the circuit alone. Any bounded

fan-in ∧,∨,¬-gate circuit can be converted into a De-Morgan circuit by pushing

down the negation gates using De-Morgan laws from Boolean algebra. Recall

that De-Morgan laws state that ¬(∧(g, h)) = ∨(¬g,¬h)) and ¬(∨(g, h)) = ∧(¬g,¬h)).

Also note that such a transformation does not change the depth of the circuit or

formula under consideration whereas the size at most doubles.

2.1.1 Circuit size and depth

The two important complexity resources associated with Boolean circuits are its

size and depth. The size of a Boolean circuit is the number of internal nodes in
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the circuit. At times size is also defined as the number of wires in the circuits and

these two definitions are polynomially related for bounded fan-in circuits. But for

the rest of the thesis, the size of the circuit would refer to the number of internal

nodes in the circuit.

The depth of a circuit, is the length of the longest path from the root of the

circuit to any of the leaves. As mentioned earlier this is analogous to the parallel

time in the CREW PRAM model of parallel computation ([J9́2]). The depth of a

circuit C is denoted by Depth(C). For a Boolean function f , Depth( f ) denotes the

minimum possible depth of a circuit computing f . By Deptht( f ) we denote the

minimum possible depth of a circuit computing f with at most t negations. Size

of a circuit is simply the number of internal gates in the circuit, and is denoted by

size(C). size( f ), sizet( f ) are defined analogous to Depth( f ),Deptht( f ) respectively.

We refer the reader to a standard textbook (cf. [Vol99]) for more details.

In complexity theory, we are interested in the asymptotic growth of these

parameters and would be using the famous big-O,Ω,Θ notations to upper and

lower bound these parameters. See a standard text book [AB07] on complexity

theory for more formal definitions of asymptotic analysis of functions.

The notion of efficient size is polynomial in the input length and the notion

of efficient depth is poly-logarithmic in the input size. The class P/poly is the

class of polynomial sized circuits. The class NC represents the class of bounded

fan-in, polynomial sized and poly-logarithmic depth circuits. The class NC has

finer circuits classes inside it based on the exponent of the logarithm of the depth.

These classes are called NCk where k ∈ N and k > 0. The class NCk is defined to be

the class of circuits of polynomial size and O(logk n) depth , where n is the input

size of the circuit. One of the interesting open problems in circuit complexity is
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to establish the popular belief that NCk is different from NCk−1. For any k we do

not know this as of now. Since we have defined NCk for each individual k, an

equivalent definition of NC is NC = ∪k∈NNCk.

2.1.2 Monotone circuits and limited negation circuits

Monotone circuits are an important and interesting restriction of general circuits,

on which circuit complexity theorists have been able to prove a lot of results. A

monotone circuit is a circuit where all the internal gates are either ∧ or ∨. That

is the circuit does not have ¬ gates. Monotone circuits compute only monotone

functions. A Boolean function f : {0, 1}n → {0, 1} is said to be monotone, if for

any x, y ∈ {0, 1}n, x ≤ y implies that f (x) ≤ f (y). Note that ≤ order on the Boolean

Hypercube {0, 1}n is defined to be x ≤ y iff for all i ∈ [n], xi ≤ yi. A bit xi is defined

to be less than or equal to bit yi either if xi = yi or xi = 0 and yi = 1. Any monotone

function can be computed by a monotone circuit. Equivalently, a function is said

to be monotone if and only if it is computed by a monotone circuit.

A Boolean function f : {0, 1}n → {0, 1} is said to be sensitive on an index i ∈ [n]

if there are inputs u, v ∈ {0, 1}N such that they agree on all indices except i, ui , vi

and f (u) , f (v).

We now introduce two important monotone functions we study in this thesis.

For a set U, we denote by
(U

2

)
the set {{u, v} |u , v ∈ U}. In an undirected graph

G = (V,E), a clique is a set S ⊆ V such that
(S

2

)
⊆ E(G). CLIQUE(n, k) is a Boolean

function f : {0, 1}(
n
2) → {0, 1} such that for any x ∈ {0, 1}(

n
2), f (x) = 1 if Gx, the

undirected graph represented by the undirected adjacency matrix x has a clique

of size k. CLIQUE(n, k) is a monotone function as adding edges (equivalent to

turning 0 to 1 in adjacency matrix) cannot remove a k-clique, if one already exists.
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We denote CLIQUE(n, n
2 ) by CLIQUE. A perfect matching of an undirected graph

G = (V,E) is an M ⊆ E(G) such that no two edges in M share an end vertex and

it is such that every vertex v ∈ V is contained as an end vertex of some edge in

M. The corresponding Boolean function PMATCH : {0, 1}(
n
2) → {0, 1} is defined as

PMATCH(x) = 1 if Gx contains a perfect matching. Note that PMATCH is also a

monotone function.

The non-monotonicity in a circuit can be parameterized in various ways. Since

syntactic definition of monotone circuits is that they are Boolean circuits without

negation gates, one way to parametrize the non-monotonicity is by counting the

number of negation gates in a circuit. A circuit family C = {Cn}n∈N is said to be

t : N→ N negation limited if at most t(n) negation gates appear in Cn.

One natural way to extend the lower bounds against monotone circuits to gen-

eral circuits is by proving lower bounds for negation limited circuits. Amano and

Maruoka ([AM05]) achieves this by proving that any t(n) = 1/6 log log n negation

limited circuit computing CLIQUE(n, n
2 ) requires super polynomial size.

2.1.3 Circuit depth and Karchmer-Wigderson relations

Karchmer and Wigderson ([KW90]) in their 1990’s seminal paper introduced a

connection between circuit depth and communication complexity. It is a strong

connection between circuit depth and communication complexity of a specific two

player game where the players say Alice and Bob are given inputs x ∈ f −1(1) and

y ∈ f −1(0), respectively. In the case of general circuits, the game is denoted by

KW( f ) and the goal is to find an index i such that xi , yi. In the case of monotone

circuits, the game is denoted by KW+( f ) and the goal is to find an index i such

that xi = 1 and yi = 0. Since monotone circuits compute monotone functions,
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KW+( f ) is defined only for monotone Boolean functions f . We abuse the notation

and use KW( f ) and KW+( f ) to denote communication cost of the best protocol

solving the corresponding communication game. The communication cost of a

deterministic protocol is the maximum number of bits exchanged on any run of

the protocol. Karchmer and Wigderson ([KW88]) proved that for any function

f , the best possible depth of any circuit computing f , denoted by Depth( f ) is

equal to KW( f ). And for any monotone function f the best possible depth of any

monotone circuit computing f , denoted by Depth+( f ) is equal to KW+( f ). Raz and

Wigderson [RW92] showed that KW+(CLIQUE) and KW+(PMATCH) are both

Ω(n).

2.2 Branching programs

Deterministic branching programs are a sequential model of computation. A

deterministic branching program is an directed acyclic graph with designated

“start”, “accept” and “reject” nodes. The nodes of the branching program are

labeled by input indices and the edges or “wires” coming out a node are labeled

by 0 or 1. A given input is said to be accepted by the branching program if there

is a path starting from the start node, reaching the accept node, and such that at

every node in the path labeled xi, the wire b ∈ {0, 1} is the next edge if and only in

the current input xi = b. Thus, every edge in the deterministic branching program

can also be thought of as querying a literal. That is if the edge is labeled 0 and

is coming out of a vertex labeled xi, it can be thought of as that the edge is query

the literal x̄i. We would be keeping this dual view, of vertex labeled branching

programs whose edges query literals, for the rest of the thesis.
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2.2.1 Branching program size

The size of the branching program captures the space used in deterministic Turing

machines. Formally, it is the number of vertices in the branching program. Another

way to measure the size of branching programs is to measure the number of edges.

But since we deal only with deterministic branching programs, the number of

edges in the branching program is at most double the size. So we can use either

definition of size, barring some constant factors in our results.

2.2.2 Nechiporuk’s sub-function counting technique

The lower bound resulting from Nechiporuk’s result ([Nec66]) from 1966 is still the

best known lower bound against deterministic branching programs. The main idea

of his lower bound is something known as the sub-function counting technique.

Let f be a function on n variables and Y1, . . . ,Ym be a partition of [n] the set of

inputs to f . The number of sub functions ci( f ) for an 1 ≤ i ≤ m, is the maximum

size of a collection S of restrictions ρ : [n] \ Yi → 0, 1 (which leaves only variables

in Yi unset) such that for any two ρ1, ρ2 ∈ S, ρ1 , ρ2, fρ1 . fρ2 . In other words ci( f )

is the number of different function on Yi that can be obtained from f by setting

the variables in [n] \ Yi. Nechiporuk proved the following theorem which gives a

branching program lower bound based on the sub-function count.

Theorem 2.2.1. [Nec66] There exists a constant ε > 0, such that for any function f

depending on all its inputs,

bpsize( f ) ≥ ε
m∑

i=1

log ci( f )
log log ci( f )

Proof. Given a deterministic branching program computing f , and given a re-
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striction ρ : [n] \ Yi → 0, 1, one can obtain a deterministic branching program

computing fρ. This is done by simply removing all the edges which queries literals

in [n] \ Yi which are false under ρ. Thus, the edges in the resulting branching

program computing fρ is at most the number of edges in the original branching

program computing f which are query literals from Yi. Let us call these number of

edges si. For two different sub-functions fρ1 and fρ2 on Yi, the resulting branching

programs obtained from the branching program computing f must be different.

Hence we get that the number of branching programs on si edges must at least be

the number sub-functions, ci( f ).

The proof is completed by an upper bound on the number of deterministic

branching programs with at most si edges and |Yi|many variables. Since branching

programs are acyclic graphs where edges are labeled by literals an easy calculation

(see [Juk12, Proof of Theorem 15.1] for details) shows that the number of different

deterministic branching programs is at most (18|Yi|si)si . Since the function f de-

pends on all the input variables and so does any restriction of f , we get that the

number of edges si must be at least |Yi|. Thus, the number of branching programs

is upper bounded by 2O(si log si). Together with the fact that this number is at least

ci( f ), we get that si = Ω( log ci( f )
log log ci( f ) ). The branching program size is at least

∑m
i=1 si as

each edge is labeled by exactly one literal and the literals are partitioned according

to the partition Y1, . . . ,Ym of [n]. �

Nechiporuk then used the above theorem with a function which has an ex-

ponential number of sub-functions, much larger than the number of branching

programs. Nechiporuk used the fact that for a function called Element Distinct-

ness, we have ci(EDn) ≥ 2Ω(n) [Juk12, Chapter 1], for a specific partition of the inputs

into O( n
log n ) parts. The element distinctness function on n = m(2 log m) bits is de-
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fined by partitioning of [n] input indices into m parts obtained by grouping every

successive 2 log m bits into one part of the partition. Each block of the partition

represents a number in [m2] and the function is 1 if all the numbers represented in

binary by all the m parts are different from one another.

Theorem 2.2.2. [Nec66] The element distinctness function EDn requires deterministic

branching programs of size Ω(n2/ log2 n)

Proof. Since ci(EDn) = 2Ω(n), we get that 2O(si log si) ≥ 2Ω(n), implying that si = Ω( n
log n ).

Since there are m = n
log n such si and since the branching program size is at least∑m

i=1 si, we get an Ω( n2

log2 n
) lower bound on size of deterministic branching programs

computing EDn. �

2.3 A barrier for proving circuit lower bounds : Natu-

ral proofs

In this section we will give a brief overview of the Natural proofs barrier and

describe what it means for a proof to be natural. It concerns with proofs which try

to prove super polynomial lower bounds against a family of circuits C. Razborov

and Rudich [RR97] view any proof that a function g doesn’t have nc sized C as

a property P of Boolean functions. Since the proof distinguishes g from all the

functions f which have nc sized C circuits, this property is 1 on g and 0 on all the

f ’s which have nc sized C-circuits. Such a propertyP is said to be nc-useful against

C, or just nc-useful if C = P/poly. An nc useful property is said to be “natural” if it

additionally satisfies the following properties.

• Constructiveness : Given the truth table of a Boolean function f : {0, 1}n →
{0, 1}, there is an algorithm which runs in polynomial (in the size of truth
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table) time and computes P( f ). Note that polynomial in truth table size is
equivalent to 2O(n) time.

• Largeness : With probability 1/n, a function f chosen uniformly at random
from set of all the functions from {0, 1}n to {0, 1}, satisfies P( f ) = 1

[RR97] proved that existence of such a natural proof against P/poly would

contradict the existence of another object called sub-exponentially strong one way

functions, which is widely believed to exist. A one way function is a polynomial

time computable function h : {0, 1}∗ → {0, 1}∗ such that for every n and every

probabilistic polynomial time algorithm A, the probability given a random x ∈

{0, 1}n, A running on f (x) “inverts” f (x), i.e. finds an x′ such that f (x′) = f (x), is

negligible. A sub-exponentially strong one-way function remains hard to invert

even if the algorithms are allowed to run in sub-exponential time, i.e. time 2nε ,

ε < 1. [RR97] proved that, if sub-exponentially strong one-way functions exist

then there exists a constant c ∈ N such that there is no nc-useful natural predicate

P useful against P/poly.

Their proof works not just for P/poly but many circuit classes, as long as

they satisfy some nice properties and have a sub-exponentially strong one way

functions that are computable in C. For example, it is believed that there are sub-

exponentially strong one way functions in even a small circuit class like NC1. And

the [RR97] natural proof theorem would imply that there exists a constant c ∈ N

such that there is no natural predicate P which is nc-useful against NC1. Hence,

even proving super polynomial lower bounds against NC1 under the assumption

of strong one-way functions require non-natural proofs. In their seminal paper,

[RR97] also showed that many known exponential lower bounds like the Parity

lower bound of [Smo87] and[FSS84] against AC0 circuits are indeed “natural”

proofs.

31



CHAPTER 3

A new measure of non-monotonicity and associated

lower bounds

We study depth lower bounds against non-monotone circuits, parametrized by a

new measure of non-monotonicity: the orientation of a function f is the character-

istic vector of the minimum sized set of negated variables needed in any DeMorgan

circuit (circuits where negations appear only at the leaves) computing f . We prove

trade-off results between the depth and the weight/structure of the orientation

vectors in any circuit C computing the CLIQUE function on an n vertex graph.

We prove that if C is of depth d and each gate computes a Boolean function with

orientation of weight at most w (in terms of the inputs to C), then d × w must be

Ω(n). In particular, if the weights are o( n
logk n

), then C must be of depthω(logk n). We

prove a barrier for our general technique. However, using specific properties of the

CLIQUE function (used in Amano Maruoka (2005)) and the Karchmer–Wigderson

framework (Karchmer Wigderson (1988)), we go beyond the limitations and ob-

tain lower bounds when the weight restrictions are less stringent. We then study

the depth lower bounds when the structure of the orientation vector is restricted.

Asymptotic improvements to our results (in the restricted setting) would separate

NP from NC. As our main tool, we generalize Karchmer–Wigderson games (Karch-

mer Wigderson (1988)) for monotone functions to work for non-monotone circuits

parametrized by the weight/structure of the orientation. We also prove structural

results about orientation and prove connections between number of negations and

weight of orientations required to compute a function.



The results that appear in this chapter are from our works that appear in [KS14]

and [KS17].

3.1 Introduction

In this chapter we study depth lower bounds for circuits which are parameterized

by their non-monotonicity. Large depth lower bounds are known [KW88, RW92]

against monotone circuits. But we do not know any depth lower bounds for lim-

ited non-monotone circuits, except for the depth lower bounds implied by size

lower bounds on bounded fan-in circuits. Note that a function which requires

large (read super logarithmic) depth circuits may not necessarily require a large

(read super polynomial) size circuit to compute it. Intuitively, this is because depth

captures “parallel time” required to solve the problem and size captures “time”

required to solve the problem. In fact showing that “efficient parallel time” is

different from “efficient time” is one of the central questions of complexity theory.

This is the P versus NC1 problem where P is all Boolean functions computable in

polynomial time on a Turing machine (and hence can be computed by a polyno-

mial size circuit) and NC1 is the class of Boolean functions which are computed by

polynomial size and logarithmic depth circuits. Hence for showing such a separa-

tion we need to prove a large depth lower bound for a function which is already

computed by polynomial sized circuits. Hence lower bounds of this nature cannot

be expected to be proved from a super polynomial size lower bound. For example

we know ([RW92]) a Ω(
√

(n)) lower bound against the PMATCH function. But

we cannot expect to prove a super polynomial size lower bound on non-monotone

circuits computing PMATCH as it is already in class P and hence is computed by

a polynomial sized circuit. Thus, we need a method of extending the depth lower
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bounds against monotone circuits to depth lower bounds for circuits with limited

non-monotonicity, but one which is not based on size lower bounds.

Another important issue is how to parametrize non-monotonicity of circuits.

A syntactical way of parameterizing non-monotonicity of circuits is to count the

number of negation gates employed by the circuit. Amano and Maruoka were

successful in using this measure of non-monotonicity to prove super polynomial

size lower bounds ([AM05]) against circuit computing the CLIQUE function with

at most 1/6 log log n negations. But it is not clear how to use the number of

negations as the measure of non-monotonicity to extend depth lower bounds from

monotone circuits to limited non-monotone circuits.

We study an alternative way of limiting the non-monotonicity in the circuit. To

arrive at our restriction, we define a new measure called orientation of a Boolean

function. The results we obtain in this chapter are based on our results from [KS14].

A generalization of monotone functions is studied under the name unate func-

tions(cf. [IPS97]). We inherit the terminology of orientation from that setting. We

remark that our definition is universal unlike the case of unate functions.

Definition 3.1.1. A Boolean function f : {0, 1}N → {0, 1} is said to have orientation

β ∈ {0, 1}N if there is a monotone Boolean function h : {0, 1}2N
→ {0, 1} such that :

∀x ∈ {0, 1}N , f (x) = h(x, (x ⊕ β)).

If f is a monotone Boolean function, from the above definition it is clear that

all-0’s vector is an orientation of f . The weight of an orientation is simply the

number of 1’s in β, and can be thought of as a parameter indicating how “close” f

is to a monotone function. Note that for any DeMorgan circuit computing f , the

characteristic vector of negated input indices forms an orientation of the function f .

Indeed, replacing the negated input variables with fresh variables in a DeMorgan
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circuit results in a monotone circuit.

The definition can be extended to circuits as well. We consider circuits where

the function computed at each gate can be non-monotone. But each gate computes

a function whose orientation (with respect to the inputs of the circuits) must be

of limited weight. We say a circuit C is weight w oriented if every internal gate

of C computes a function which has an orientation β with |β| ≤ w. The weight

restriction on a circuit thus defined is a semantic restriction as we are only limiting

the weight of orientation of the functions computed at sub-circuits of C. But we

do not place any restriction on how (especially in terms of actual negation gates)

the functions at sub-circuits are computed in C. We prove the following theorem

which presents a depth vs weight trade-off for weight restricted circuits.

Theorem 3.1.2. If C is a Boolean circuit of depth d and weight of the orientation w (w > 0),

computing CLIQUE on an n vertex graph then, d × w must be Ω(n).

In particular, if the weights are o( n
logk n

), the CLIQUE function requires ω(logk n)

depth. Note that in terms of input size N, this weight is o(
√

N
logk N

). By contrast,

any circuit computing CLIQUE has weight of the orientation at each gate at most

n2. We prove the above theorem by extending the Karchmer–Wigderson frame-

work for monotone circuit depth, to the case of non-monotone circuits which are

sparsely oriented1. The proof depends critically on the route to monotone depth

via Karchmer–Wigderson games. This is because it is unclear how to directly sim-

ulate weight w-restricted circuit model using a monotone circuit for w > 0. We

remark that the above theorem applies even to circuits computing PMATCH.

1In our explanations, we say that a Boolean function is ”sparsely oriented” if there is an appro-
priate upper bound on the weight of the orientation of the function. When it is unrestricted, we
describe it as densely oriented. We call a gate sparsely oriented (resp. densely oriented), when
the Boolean function computed at the gate is sparsely oriented (resp. densely oriented). In our
technical statements we state the weight bounds precisely rather than using this term.
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The difficulty in extending the above lower bound to more general lower

bounds is the potential presence of gates computing “densely” oriented func-

tions. In this context, we explore the usefulness of gates with non-zero orientation

in a circuit. We argue that allowing even a constant number of non-zero (but

“dense”) weight of orientation gates can make the circuit more powerful in the

limited depth setting. In particular, we show (see Theorem 3.3.1) that:

Theorem 3.1.3. There exists a monotone Boolean function f which cannot be computed

by poly-log depth monotone circuits, but there is a poly-log depth circuit computing f such

that there are at most two internal gates whose weight of orientation is non-zero.

We note that the function in Theorem 3.3.1 is derived as a restriction from

the non-uniform NC2 circuit computing PMATCH and hence is not explicit. The

above theorem indicates that the densely oriented gates are indeed useful, and that

Theorem 3.1.2 cannot be improved in terms of the number of densely oriented gates

it can handle, without using specific properties about the function (for example,

CLIQUE) being computed.

Going beyond the above limitation, we exploit the known properties of the

CLIQUE function and use the generalized Karchmer–Wigderson relations to prove

lower bounds against circuits with less stringent weight restrictions (in particular,

we can restrict the weight restrictions to only negation gates and their inputs)

We prove the following theorem by combining our method with the method of

[AM05] for number of negations to obtain the following result.

Theorem 3.1.4. For any circuit familyC = {Cm} (where m =
(n

2

)
) computing CLIQUE(n,n

1
6α )

with ` + k negation gates, where ` ≤ 1/6 log log n, α = 2`+1
− 1, at most k negation

gates are computing functions which are sensitive only on w inputs2 with kw ≤ n
8 and

2i.e., the weight of orientation of the function computed at their input plus orientation of the
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the remaining ` negations compute functions of arbitrary orientation the follwing holds:

Depth(Cm) ≥ n
1

2`+8

This theorem implies that CLIQUE cannot be computed by circuits with depth

no(1) even if we allow some constant number of gates to have non-zero (even dense)

orientation - thus going beyond the earlier hurdle presented for PMATCH. We

remark that the above theorem also generalizes the case of circuits with negations

at the leaves (` = 0, and w = 1).

It gives hope that by using properties of CLIQUE (like hardness of approxima-

tion from [AM96] used by [AM05]) one can possibly push the technique further.

We also explore the question of the number of densely oriented gates that are

required in an optimal depth circuit. We establish the following connection to the

number of negations in the circuit.

Theorem 3.1.5. For any circuit C with t negations, there is a circuit C′ computing the

same function such that size(C′) ≤ 2t
× (size(C) + 2t) + 2t, and there are at most 3(2t

− 1)

internal gates whose orientation is a non-zero vector.

Next we study circuits where the structure of the orientation is restricted. The

restriction is on the number of vertices of the input graph involved in edges indexed

by the orientation vector of the function.

Theorem 3.1.6. If C is a circuit computing the CLIQUE function on n vertex graph and

for each gate g of C, the number of vertices of the input graph involved in edges indexed by

βg (the orientation of gate g) is at most w, then d × w must be Ω( n
log n ).

We also study a sub-class of the above circuits for which we prove better

lower bounds. A circuit is said to be of uniform orientation if there exists a single

function computed at their output is at most w
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vector β ∈ {0, 1}N such that every gate in it computes a function for which β is an

orientation.

Theorem 3.1.7. Let C be a circuit computing the CLIQUE function on an n vertex graph,

with uniform orientation β ∈ {0, 1}N such that there is a subset of vertices U and an ε > 0

with |U| ≥ logk+ε n for which βe = 0 for all edges e within U, then C must have depth

ω(logk n).

We remark that a DeMorgan circuit has an orientation of weight exactly equal

to the number of negated variables. However, this result is incomparable with that

of [RW89] against DeMorgan circuits for two reasons : (1) this is for the CLIQUE

function. (2) the lower bounds and the class of circuits are different.

In contrast to the above theorem, we show that an arbitrary circuit can be

transformed into one having our structural restriction on the orientation with

|U| = O(logk n).

Theorem 3.1.8. If there is a circuit C computing CLIQUE with depth d then for any set

of c logk n vertices U, there is an equivalent circuit C′ of depth d + c logk n with orientation

β such that none of the edges e(u, v), u, v ∈ U has βe(u,v) = 1.

Thus, if either Theorem 3.1.7 is extended to |U| = Ω(logk n) or the transformation

in Theorem 3.1.8 can be modified to give |U| = O(logk+ε n) for some constant ε > 0,

then a depth lower bound for CLIQUE function against general circuits of depth

O(logk n) will be implied.

The rest of this Chapter is organized as follows. In Section 3.2 we define our

new measure, orientation, and prove some interesting properties of orientation.

Then in Section 3.3 we show the usefulness of orientation by proving that there is

a (non-explicit) function for which the depth required to compute it reduces from
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super poly-logarithmic to poly-logarithmic if even two internal gates of non-zero

orientation are allowed. In Section 3.4, we show a trade-off between depth of cir-

cuits computing PMATCH,CLIQUE and the weight of orientation of such circuits,

the main result of this chapter. In the next section, Section 3.5, we compare the

number of negations in the circuits as a measure of non-monotonicity with weight

of orientation as a measure of non-monotonicity. In Section 3.6, we show how to

combine Amano and Maruoka’s negation limited lower bounds with our orienta-

tion based lower bound. In Section 3.7 we impose some structural restrictions on

orientation and prove improved lower bounds. We then generalize De-Morgan

circuits using a notion of “uniform” orientation in Section 3.8. In Section 3.9 we

show how to prove an NC lower bound for functions like PMATCH and CLIQUE

assuming a structure theorem related to Orientation. In Section 3.10 we prove a

structure theorem which is “almost” the assumed structure theorem which would

give NC lower bounds. We conclude the chapter by discussing the naturalness of

our approach in Section 3.11.

3.2 Properties of orientation

In this section, we systematically study and include observations about the new

measure of non-monotonicity that we introduced, orientation. We start by recalling

the definition of orientation :

Definition 3.2.1 (Orientation of a Boolean function). a function f : {0, 1}N → {0, 1} is

said to have orientation β ∈ {0, 1}N if there is a monotone function h : {0, 1}2N
→ {0, 1}

such that ∀x ∈ {0, 1}N , :

f (x) = h(x, (x ⊕ β))

39



We first argue that for any function f (x) there is a vector β and a monotone

function h that satisfies the conditions of above definition. Let C be any cir-

cuit computing f . Convert C into a DeMorgan circuit C′ by pushing down the

negations via repeated applications of De-Morgan’s law. In C′, for every i ∈ [N]

replace x̄i with a new variable yi. Thus, C′ on inputs x, y is computes a mono-

tone function. Since there are N input variables at most N yi’s are needed. Let

h = C′(x1, . . . , xN, y1, . . . , yN) be the monotone function computed by C′ after re-

placing the negated inputs by fresh variables. Clearly h satisfies the required form

with β defined as βi = 1 if and only if x̄i appears in C′.

Property 3.2.2 (Upward Closure). If β ∈ {0, 1}N is an orientation for a function f , then

any β′ ≥ β is also an orientation for f by definition of orientation.

Proof. To see this, let hβ be the monotone function guaranteed by definition of

orientation for orientation β. The monotone function hβ′ can be defined to be hβ

itself. �

We also demonstrate this through an example. Consider the Boolean function

f (x1, x2, x3) = x1 ∨ x̄2x̄3. Vector β = 011 is a valid orientation for f because we have

the monotone function h(x1, x2, x3, y1, y2, y3) = x1 ∨ y2y3 which behaves as f when

y1 = x1 ⊕ 0, y2 = x2 ⊕ 1, y3 = x3 ⊕ 1. Note that vector β′ = 111 is also a valid

orientation vector because we can use h′ = h as h ignores y1.

Using Property 3.2.2, we prove a necessary condition for vectors to be valid

orientation of a Boolean function f , which we state below.

Property 3.2.3 (Necessary Conditions for Orientation). Let β ∈ {0, 1}N be an orien-

tation for a function f . If there exists a pair (u, v) such that ui = 0, vi = 1, u[N]\{i} = v[N]\{i}

and f (u) = 1, f (v) = 0 then, βi = 1.
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Proof. Let h be the monotone function corresponding to f for β such that ∀x, f (x) =

h(x, x ⊕ β). Assume to the contrary that βi = 0. Since u[N]\{i} = v[N]\{i}, we have that

u[N]\{i}⊕β = v[N]\{i}⊕β for any β. Hence (u,u⊕β), (v, v⊕β) differs only in two indices,

namely i,N + i. At i, ui = 0, vi = 1. Since βi = 0, uN+i = ui = 0, vN+i = vi = 1. Hence

we get that (u,u ⊕ β) < (v, v ⊕ β), but h(u,u ⊕ β) = 1, h(v, v ⊕ β) = 0, a contradiction

to monotonicity of h. �

It is not a priori clear that a minimal (with respect to < relation on the Boolean

hypercube {0, 1}N) orientation for a function f is unique. We prove that it is indeed

unique using the previous property.

Property 3.2.4 (Minimal Orientation is Unique). Minimal orientation for a function

f : {0, 1}N → {0, 1} is unique and it is β ∈ {0, 1}N such that βi = 1 if and only if there exists

a pair (u, v) such that ui = 0, vi = 1, u[N]\{i} = v[N]\{i} and f (u) = 1, f (v) = 0.

Proof. From Property 3.2.3, it is clear that any orientation β′ of a function f is such

that β ≤ β′. We claim that negations of variables in β suffices to compute f using

a DeMorgan circuit. Define a partial function h : {0, 1}2N
→ {0, 1} associated with

orientation β of f as h(x, x ⊕ β) , f (x). We claim that this partial function has an

extension which is a monotone function. We claim that for any u, v ∈ {0, 1}N such

that u ≤ v and f (u) = 1, f (v) = 0, there exists an i ∈ [N] such that ui = 0, vi = 1

and βi = 1. Let w0 = u ≤ w1 ≤ · · · ≤ w j ≤ w j+1 ≤ · · · ≤ wk = v be a chain on

the hypercube between u and v. Take the minimum j such that f (w j) = 1 and

f (w j+1) = 0. Since w j,w j+1 satisfies assumptions of Property 3.2.3, for the i where

w j and w j+1 differs, βi = 1. Since u ≤ w j and the ith bit of w j is 0, we get ui = 0.

Similarly vi = 1 as v ≥ w j+1 and the ith bit of w j+1 is 1. With this claim we can

prove that for any (s, s ⊕ β) and (t, t ⊕ β) either they are incomparable or f (s) ≥ f (t)

if and only if (s, s ⊕ β) ≥ (t, t ⊕ β). Suppose that f (s) < f (t) and (s, s ⊕ β) ≥ (t, t ⊕ β).
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Since (s, s ⊕ β) ≥ (t, t ⊕ β), s ≥ t and f (s) = 0, f (t) = 1 as f (s) < f (t). But then we are

guaranteed by the earlier claim an i ∈ [N] such that si = 1, ti = 0, βi = 1. Since βi = 1,

si ⊕ βi = 0 and ti ⊕ βi = 1 whereas si = 1, ti = 0 implying that (s, s ⊕ β) � (t, t ⊕ β),

a contradiction. Thus, the partial function we defined will never have a chain

with a 1 to 0 transition. Also any partial function h which does not have a 1 → 0

transition on any of the chains of the Boolean hypercube, has an extension to a

function which is monotone. �

With Property 3.2.4 characterizing unique minimal orientation, we can illus-

trate how weight of orientation captures non-monotonicity of Boolean functions. By

Property 3.2.4 a Boolean function is monotone if and only if the weight of min-

imal orientation is 0. On the other hand, a highly non-monotone function3, like

Parity(x1, . . . , xN) = ⊕N
i=1xi has weight of minimal orientation the maximum possi-

ble, N. This follows from Property 3.2.4, as for any i ∈ [N], i , 1 consider u = 10N−1

and v = 10i−210N−i+1. Note that u ≤ v, u, v differ only at index i, and Parity(u) = 1

but Parity(v) = 0. Thus implying that for any i ∈ N, i , 1, the minimal orientation

β of Parity has βi = 1. For i = 1, consider u = 0N−11 and v = 10N−21.

3.3 High orientation provably (non-explicit) reduces

depth

We show that even as few as two “densely” oriented internal gates can help to

reduce the depth from super poly-log to poly-log for some functions.

Theorem 3.3.1. There exists a monotone Boolean function f such that it cannot be com-

3Parity requires log N negation gates in any circuit computing it [Mar58], and this is the maxi-
mum number of negations needed for any function [Fis75].
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puted by poly-log depth monotone circuits, but there is a poly-log depth circuit computing

it with at most two internal gates having non-zero orientation β.

Proof. It is known [RW92] that PMATCH does not have monotone circuits of poly-

log depth. But if arbitrary negations are allowed then there is an O(log2 N) depth

circuit computing PMATCH [Lov79]. The monotone function f claimed in the

theorem is obtained from poly-log depth circuit C computing PMATCH. Fischer’s

theorem guarantees that without loss of generality we can assume that C has at

most log N negations.

If there is a poly-log depth circuit having exactly one negation computing

PMATCH, then Theorem 3.1.5 can be applied to get a circuit of poly-log depth

having at most two gates of non-zero orientation. Otherwise, the circuit has t ≥ 2

negations, and there is no poly-log depth circuit computing the same function with

one negation. Let g1 denote the input to the first negation gate(in the topological

sorted order) in C. From C obtain C′ by replacing g1 with a new variable, say

y1. Let C′0, C′1 denote the circuits obtained by setting y1 to 0,1 respectively. The

corresponding functions f0, f1 need not be monotone. Hence we define monotone

functions f ′0 , f ′1 from f1, f0 :

f ′0 (x) = f0 (x) ∨ g1 (x)

f ′1 (x) = f1 (x) ∧ g1 (x)

When g1 (x) = 0, f0 (x) = f (x) and when g1 (x) = 1, f ′0 (x) = 1. Hence f ′0 is monotone.

A similar argument can be used to establish that f ′1 is monotone. Note that both

f ′0 , f ′1 have poly-log depth circuits with at most t − 1 negation gates.

We claim that one of f ′0 , f ′1 does not have a monotone circuit of poly-log depth.
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Otherwise from poly-log depth monotone circuits computing f ′0 , f ′1 and the mono-

tone circuit of poly-log depth computing g1 we can get a poly-log depth cir-

cuit computing f with one negation : use g1(x) as a selector to select f ′1 (x) or

f ′0 (x) as which is appropriate. This circuit computes f because, by definition,

(g1(x)∧ f ′1(x))∨ (g1(x)∧ f ′0(x)) = f (x). This contradicts our assumption that there is

no circuit of poly-log depth computing f with one negation.

Applying the procedure once, we get out of either f ′0 or f ′1, a monotone function

f ′ which has a t− 1 negation poly-log depth circuit, but it has no monotone circuit

of poly-log depth computing it. If the function f ′ has a poly-log depth circuit

with one negation then Theorem 3.1.5 can be applied to get the desired function.

Otherwise apply the procedure on f ′ as f ′ is a monotone function which does

not have any poly-log depth circuit with at most one negation. Applying the

procedure at most t (t ≤ log N) times we get to a monotone function f ′ having

a poly-log depth circuit with one negation, but has no monotone poly-log depth

circuit. Applying Theorem 3.1.5 on the one negation circuit gives a poly-log depth

circuit with at most two gates of non-zero orientation. �

This theorem combined with the “sparse” orientation protocol implies that the

two non-zero orientations β1, β2 are such that |β1| + |β2| is not only non-zero but is

super poly-log. Since our protocol spends |β1| + |β2| for handling these two gates,

and on the remaining gates in the circuit it spends 1 bit each, the cost of the sparse

orientation protocol will be at most |β1| + |β2| + Depth(C). Thus |β1| + |β2| is at least

KW+( f ) −Depth(C) which is super poly-log as Depth(C) is poly-log and KW+( f )

is super poly-log.

Remark 3.3.2. By Theorem 3.3.1 we get a function which has an NC2 circuit with

two non-zero orientation gates which has no monotone circuit of poly-log depth.
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Thus, our bounds cannot be strengthened to handle higher weights without incor-

porating the specifics of the function being computed. In Section 3.7, we rescue

the situation slightly using the specific properties of the CLIQUE function.

Remark 3.3.3. The proof of Theorem 3.3.1 also implies that there is a monotone

function f (not explicit) such that there is a one negation circuit in NC2 computing

it, but any monotone circuit computing f requires super-poly-log depth.

3.4 Depth lower bounds for circuits of sparse orienta-

tion

In this section, we prove Theorem 3.1.2 which shows the trade-off between depth

and weight of orientation of the internal gates of a circuit. We prove the following

lemma which is the main result of this chapter. Note that the Theorem 3.1.2

immediately follows from the following lemma as we know [RW92] that monotone

depth of the CLIQUE function is Ω(n).

Lemma 3.4.1. If C is a depth d circuit computing a monotone Boolean function

f : {0, 1}N → {0, 1} which is sensitive on all its indices and each internal gate of

C computes a Boolean function whose orientation has weight at most w, then

d × (4w + 1) ≥ KW+( f ).

Proof. The proof idea is to devise a protocol for KW+( f ) using C having Depth(C)

rounds and each round having a communication cost of 4w + 1.

Alice is given x ∈ f −1(1) and Bob is given y ∈ f −1(0). The goal is to find an index

i such that xi = 1, yi = 0. For simplicity of presentation we would assume that the

∧,∨ gates are of fan-in 2 and ¬ is of fan-in 1. It is easy to see the proofs for constant
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fan-in from the current proof. The protocol is described in Algorithm 1.

Algorithm 1 Modified Karchmer–Wigderson Protocol

1: {Let x′ and y′ be the current inputs. At the current gate g computing f , with
the input gates g1 and g2 where f1 and f2 are the functions computed, let β1, β2

be the corresponding orientations (and are known to both Alice and Bob). If
g1 or g2 is a negation gate, let γ1 and γ2 be the orientation vectors of input
functions to g1 and g2, otherwise they are 0-vectors. Let α = β1 ∨ β2 ∨ γ1 ∨ γ2.
Let S = {i : αi = 1}, xS is the substring of x indexed by S.}

2: if g is ∧ then
3: Alice sends x′S to Bob. Bob compares x′S with y′S.
4: if there is an index i ∈ S such that x′i = 1 and y′i = 0 then
5: Output i.
6: else
7: Define y′′ ∈ {0, 1}N: y′′S = x′S and y′′[N]\S = y′[N]\S.
8: Bob sends j ∈ {1, 2} such that f j(y′′) = 0 to Alice. They recursively run the

protocol on g j with x′ = x′ and y′ = y′′.
9: end if

10: end if
11: if g is ∨ then
12: Bob sends y′S to Alice. Alice compares y′S with x′S.
13: if there is an index i ∈ S such that x′i = 1 and y′i = 0 then
14: Output i.
15: else
16: Define x′′ ∈ {0, 1}N: x′′S = y′S and x′′[N]\S = x′[N]\S.
17: Alice sends j ∈ {1, 2} such that f j(x′′) = 1 to Bob. They recursively run the

protocol on g j with x′ = x′′ and y′ = y′.
18: end if
19: end if

We now prove that the protocol (Algorithm 1) solves KW+( f ). The following

invariant is maintained during the run of the protocol and is crucial for the proof

of correctness.

Invariant: When the protocol is at a node which computes a function f with

orientation vector β it is guaranteed a priori that the inputs held by Alice and

Bob, x′ and y′ are equal on the indices where βi = 1, f (x′) = 1, f (y′) = 0 and the

restriction of f obtained by fixing variables where βi = 1 to x′i(= y′i) is a monotone

function.

If the invariant is maintained, we claim that when the protocol stops at a leaf
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node of the circuit computing a function f with f (x′) = 1 and f (y′) = 0 then f = xi

for some i ∈ [N]. If the leaf node is a negative literal, say x̄i then by Property 3.2.3,

orientation of x̄i has βi = 1. By the guarantee that x′β = y′β, we have x′i = y′i ,

contradicting f (x′) , f (y′). Hence whenever the protocol stops at a leaf node it is

guaranteed that the leaf is labeled by a positive literal. And when the input node is

labeled by a positive literal xi, then a valid solution is output, as f (x′) = 1, f (y′) = 0

implies x′i = 1 and y′i = 0. Note that during the run of the protocol we only changed

x, y at indices i where xi , yi, to x′i = y′i . Hence, for any index where x′i , y′i it is the

case that xi = x′i and yi = y′i .

Now to prove the invariant note that it is vacuously true at the root gate as

f is a monotone function implying β = 0N, and in the standard KW+( f ) game

x ∈ f −1(1) and y ∈ f −1(0). We argue that, while descending down to one of the

children of the current node the invariant is maintained. To begin with, we show

that the protocol does not get stuck in step 8 (and similarly for step 17). To prove

this, we claim that at an ∧ gate f = f1 ∧ f2, if the protocol failed to find an i in

step 4 such that x′i = 1, y′i = 0 then on the modified input y′′ at least one of f1(y′′)

or f2(y′′) is guaranteed to be zero. Since the protocol failed to output an i such that

x′i = 1, y′i = 0, it must be the case that x′i ≤ y′i for indices indexed by β1, β2. Let U be

the subset of indices indexed by β1 and β2 where xi = 0 and yi = 1. Bob obtains y′′

from y′ by setting y′′i = 0 for all i ∈ U. Thus, we have made sure that x′ and y′′ are

the same on the variables whose negations are required to compute f , f1 and f2.

Consider the functions f ′, f ′′ : {0, 1}N−|β1∨β2| → {0, 1} which are obtained by

restricting the variables indexed by orientation vectors of f1 and f2 to the value

of those variables in x′. Both f ′ and f ′′ are monotone as they are obtained by

restricting all negated input variables of the DeMorgan circuits computing f1 and
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f2 for orientations β1 and β2 respectively. The changes made to x′, y′ were only

at places where they differed. Thus, at all the indices where x′, y′ were the same,

x′, y′′ is also same. Hence the monotone restriction fx′β
of f obtained by setting

variables indexed by β to their values in x′ is a consistent restriction for y′′ also.

Note that y′′ ≤ y′. Hence f (y′′) = 0 because y′′ agrees with y′ on variables

indexed by β (as x′′ agrees with y′ and y′′ on variables indexed by β) implying

fx′β
(y′′[N]\β) ≤ fx′β

(y′[N]\β) = 0. Since f (y′′) = 0, it is guaranteed that one of f1(y′′), f2(y′′)

is equal to 0. Bob sets y′ = y′′ and sends 0 if it is f1(y′′) = 0 or 1 otherwise, indicating

Alice which node to descend to. Note that x′β1
= y′′β1

, x′β2
= y′′β2

and the restrictions of

f1, f2 to x′β1
, x′β2

respectively gives monotone functions f ′, f ′′ thus maintaining the

invariant for both f1 and f2.

We claim that if any of the input gates g1, g2 to the current ∧ gate g is a ¬ gate

then the protocol will not take the path through the negation gate. To argue this,

we use the following lemma.

Lemma 3.4.2. If ` and complement of ` are functions with orientations β, γ, then

for all x, y ∈ {0, 1}N such that xβ∨γ = yβ∨γ, `(x) = `(y).

Proof. We know that for a function `, if there exists a pair (u, v) ∈ {0, 1}N × {0, 1}N

with u ≤ v, ui , vi, u[N]\{i} = v[N]\{i} and `(u) = 1, `(v) = 0 then by Property 3.2.3 for

every orientation β, βi = 1. Let i be an index on which ` is sensitive, i.e., there exists

(u, v) ∈ {0, 1}N × {0, 1}N with u ≤ v, ui , vi, u[N]\{i} = v[N]\{i} and `(u) , `(v). Note that

` is sensitive on i need not force βi = 1, as it could be that `(u) = 0 and `(v) = 1. But

in this case ¯̀(u) = 1 and ¯̀(v) = 0, hence γi = 1 for ¯̀. Hence, ` is sensitive only on

indices in β ∨ γ. �

The lemma establishes that every negation gate in a weight w oriented circuit
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computes a function which is sensitive on at most 2w indices. Hence if 2w < N the

root gate cannot be a negation gate for a function sensitive on all inputs. Suppose at

a node one of the children is a negation gate, say f1. Since we ensure x′β1∨γ1
= y′′β1∨γ1

,

Lemma 3.4.2 implies f1(x′) = f1(y′′). But the protocol does not descend down a

path where x′, y′′ are not separated. Hence the claim.

This also proves that when the protocol reaches an ∧ node where both children

are negation gates, at the round for that node the protocol outputs an index i and

stops. Otherwise, since we ensure x′S = y′′S , f1(y′′) = f1(x′) = 1 and f2(y′′) = f2(x′) =

1 by Lemma 3.4.2. But this contradicts the fact that at a node f = f1 ∧ f2 either

f1(y′′) = 0 or f2(y′′) = 0 (or both).

The proof of equivalent claims for an ∨ gate is similar except for the fact that

Alice modifies her input.

Thus, using the above protocol we are guaranteed to solve KW+( f ). Communi-

cation cost of any round is at most 4w+1. Because if any of the children is a negation

gate then we have to send its orientation along with the orientation of its comple-

ment. The protocol clearly stops after Depth(C) many rounds. Thus, the commu-

nication complexity of the protocol is upper bounded by Depth(C) × (4w + 1). �

3.5 Comparison of orientation to negations

Since the weight of the orientation can be thought of as a measure of non-

monotonicity in a circuit, a natural question to explore is the connection between

the number of negation gates and number of non-zero orientation gates required

to compute a function f . We now prove Theorem 3.1.5 from the introduction of

this Chapter.
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Proof. In CN replace input of each negation by new a variable, say y1, . . . , yt, thus

obtaining a circuit C′′N(x1, . . . , xN, y1, . . . , yt). Let g1, . . . , gt be the inputs to the t

negation gates (in topologically sorted order) of CN. Note that for each setting of

y1, . . . , yt to some b ∈ {0, 1}t, C′′N(x, b) is a monotone circuit computing a monotone

function on x1, . . . , xN. Hence the weight of orientation of each internal gate in

C′′N(x, b) is zero. Let gi,b for i ∈ [t], b ∈ {0, 1}t denote the monotone function computed

by the sub-circuit Cgi of CN rooted at gate gi, where g1, . . . , gi−1 are set to b1, . . . , bi−1

respectively. Thus, we can write f as:

f (x1, . . . , xN) =
∨

b∈{0,1}t

 t∧
i=1

gbi
i,b(x)

 C
′′

N(x, b), (3.1)

where g0 denotes g and g1 denotes g. When t = 1, then the above expression

becomes f (x) = g(x)C(x, 1)∨ g(x)C(x, 0). In this case the only gates which can have

non-zero orientation are the negation computing g, ∧ computing g(x)C(x, 0) and

the root gate (if the function computed is non-monotone). Hence when t = 1 the

circuit has at most three gates with non-zero orientation if the circuit computes a

non-monotone function and at most two gates of non-zero orientation otherwise.

Consider the formulation of a circuit C′ computing f given in Equation (3.1).

Clearly size(C′) ≤ 2t
×(size(CN)+2t)+2t. All internal gates in C′′N(a, b) are monotone.

Non-zero orientation is needed only for computing:

•
∧

i∈[t],bi=0
gi,b

• ∧ of
∧

i∈[t],bi=0
gi,b with

∧
i∈[t],bi=1

gi,b ∧ C′′(x, b)

• the ∨-tree, computing
∑

of 2t terms which are potentially of non-zero orien-
tation.

Instead of computing
∧

i∈[t],bi=0
gi,b, we can compute the equivalent formula

∨
i∈[t],bi=0

gi,b.
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For computing
∨

i∈[t],bi=0
gi,b we just need one negation gate as all gi,b are monotone

circuits . To compute the ∧ of this intermediate product with
∧

i∈[t],bi=1
gi,b ∧ C′′(x, b)

one more gate is needed. Thus, the total number of gates needed is 2 for each

b except for b = 1t in which case we don’t need any negations. Let us call the

number of such gates K1. By the above analysis, K1 =
∑

b∈{0,1}t,b,1t 2 = 2(2t
− 1).

The remaining gates are the internal gates in the ∨ tree implementing the sum of

terms. Since there are 2t leaves, the number of internal nodes in the tree, say K2

is at most 2t
− 1. Hence the total number of nodes with non-zero orientation is at

most K1 + K2 = 3(2t
− 1). �

Remark 3.5.1. In conjunction with the result of Fischer [Fis75], this implies that it is

enough to prove lower bounds against circuits with at most O(N) internal nodes

of dense orientations, to obtain lower bounds against the general circuits.

3.6 A new depth lower bound combining orientation

and negations

The number of gates with high orientations can be arbitrary in general. In this

subsection we give a proof for Theorem 3.1.4. We first extend our technique to

handle the low weight negations efficiently so that we get a circuit on high weight

negations (see Lemma 3.6.1 below). To complete the proof of Theorem 3.1.4,

we appeal to depth lower bounds against negation-limited circuits computing

CLIQUE(n,n
1
6α).

Lemma 3.6.1. For any circuit family C = {CN} computing CLIQUE(n,n
1
6α) where

there are k negations in CN computing functions which are sensitive only on 2w

input bits (i.e., the orientation of their input as well as their output is at most

51



w) with kw ≤ n
8 and the remaining ` negations compute functions of arbitrary

orientation: Depth(CN) ≥ Depth`(CLIQUE( 3n
4 ,n

1
6α))

Proof. Since k negations of CN depend only on kw inputs (i.e, edges) the number of

vertices in the graph which have at least one of its edges indexed by one of the k

negations is 2kw. Let this set of vertices be S. Then |S| ≤ n
4 . In CN set input variables

corresponding to edges in
(S

2

)
and the variables corresponding to edges between

S and [N] \ S to 0. Note that the circuit C′N obtained from CN by this restriction

computes CLIQUE(3n
4 ,n

1
6α). Note that all the k negations which are sensitive only

on edges indexed by
(S

2

)
is fixed to a constant as

(S
2

)
is fixed. Hence C′N has at most

` negations. Hence the theorem.

�

By a straightforward application of the technique used in [AM05] to prove size

lower bounds against circuits with limited negations computing CLIQUE(n,n
1
6α)

we obtain the size version of following lemma

Lemma 3.6.2. For any circuit C computing CLIQUE(n,n
1

6α ) with ` negations where

` ≤ 1/6 log log n and α = 2`+1
− 1,

Depth`( f ) ≥ n
1

81α

Combining Lemma 3.6.1 and Lemma 3.6.2 completes the proof of Theorem 3.1.4.

Since the trade-off result stated in Lemma 3.6.2 is not explicitly stated and

proved in [AM05], we present the relevant part of the proof technique in [AM05]

with careful choice of parameters obtaining the trade-off. For consistency with

notation used in [AM05], for the remainder of this section we will be denoting the
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number of vertices in the graph by m.

The main idea in [AM05] is to consider the boundary graph of a function

f , defined as G f =
{
(u, v)|∆(u, v) = 1, f (u) , f (v)

}
where ∆(u, v) is the hamming

distance. They prove that if there is a t negations circuit C computing f then

the boundary graph f must be covered by a union of boundary graphs of 2t+1

functions obtained by replacing the negations in C by variables and considering

the input functions of t negation gates and the output gate where the negations in

the sub-circuit considered are restricted to constants.

They prove that,

Lemma 3.6.3. [AM05, Theorem 3.2] Let f be a monotone function on n variables.

For any positive integer t,

sizet( f ) ≥ min
F′={ f1,..., fα}⊆Mn

max
{
sizemon( f ′)

}
f ′∈F′

|

⋃
f ′∈F′

G( f ′) ⊇ G( f )


where α = 2t+1

− 1 and G( f ′) denotes the boundary graph of the function f ′.

The size lower bound they derive crucially depends on the following lemma

which states that no circuit of “small” size can “approximate” clique in the sense

that either it rejects all the “good” graphs or accepts a huge fraction of “bad”

graphs.

Lemma 3.6.4. [AM05, Theorem 4.1] Let s1, s2 be positive integers such that 64 ≤

s1 ≤ s2 and s1/3
1 s2 ≤

m
200 . Suppose that C is a monotone circuit and that the fraction

of good graphs in I(m, s2) such that C outputs 1 is at least h = h(s2). Then at least

one of the following holds:

• The number of gates in C is at least (h/2)2s1/3/4.
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• The fraction of bad graphs in O(m, s1) such that C outputs 0 is at most 2/s1/3
1 .

where a “good” graph in I(m, s2) is a clique of size s2 on m vertices and no other

edges and a “bad” graph in O(m, s1) is an (s1 − 1)-partite graph where except for at

most one partition the partitions are balanced and of size d m
s1−1e each.

Lemma 3.6.5. For any circuit C computing CLIQUE(m,m
1

6α ) with t negations with

t ≤ 1/6 log log m, size of C is at least 2m
1

81α where α = 2t+1
− 1.

Proof. The proof is similar to the proof ([AM05, Theorem 5.1]) by Amano and

Maruoka except for change of parameters. Assume to the contrary that there

is a circuit C with at most t negations computing CLIQUE(m,m
1

6α ) with size M,

M < 2m
1

81α . By Lemma 3.6.3 there are α , 2t+1
− 1 functions f1, . . . , fα of size at

most M (as they are obtained by restrictions of the circuit C) such that ∪αi=1G( fi) ⊇

G( f ). Let s = m
1

6α and let l0, l1, . . . , lα be a monotonically increasing sequence of

integers such that l0 = s, lα = m and li = m1/10+(i−1)/(3α). Note that s1/3li ≤ li+1 as

s1/3li = m1/(18α)+1/10+(i−1)/(3α) < m =1/10+(i)/(3α)= li+1. Also
[
l0 = s = m

1
6α

]
<

[
l1 = m1/10

]
as α = 2t+1

− 1 ≥ 22
− 1, lα−1 < m1/10+1/3 < m. Thus, l0 < l1 < · · · < li < li+1 < · · · < lα.

The definition of “bad” graphs and “good” graphs at layer li remains the same as

in [AM05]. Note that [AM05, Corollary 5.2] is true for our choice of parameters

as s1/3li−1 ≤ li. Equations 5.1 to 5.3 of [AM05] are valid in our case also as these

equations does not depend on the value of the parameters. The definition of a

dense set remains the same, and h ≥ 1
α ≥

1
m (as m ≥ log m ≥ α) is such that

(h/2)2s1/3/4
≥

1
m2m

1
18α /4 is strictly greater than M = 2m

1
81α . Hence Equation 5.4 of

[AM05] is also true in our setting. Claim 5.3 of [AM05] is independent of choice of

parameters, hence is true in our setting also.

Claim 3.6.6. [AM05, Claim 5.3]
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Suppose c1 > 1 and c2 > 1. Put c3 = α. Let f1, . . . , fc3 be the monotone functions such

that ∪c3
i=1G( fi) ⊇ G(CLIQUE(m, s)) and sizemon( fi) ≤ M for any 1 ≤ i ≤ c3. Suppose that

for distinct indices i1, . . . , ik ∈ [c3],

Pr
Lk∈Lk

[
Pr

u∈OLk

[
fi1(u) = · · · = fik(u) = 1

]
≥

1
c1

]
≥

1
c2

holds. If c1c2c3 ≤ s1/3
1 /8, then there exists ik+1 ∈ [c3] \ {i1, . . . , ik} such that

Pr
Lk+1∈Lk+1

[
Pr

u∈OLk+1

[
fi1(u) = · · · = fik(u) = 1

]
≥

1
4c1c2c3

]
≥

1
2c1c2

Now for any k ∈ [α] there are k distinct indices i1, . . . , ik ∈ [α] such that

Pr
Lk∈Lk

[
Pr

u∈OLk

[
fi1(u) = · · · = fik(u) = 1

]
≥

1
2k2(t+2)

]
≥

1
2k(t+2)

(3.2)

The proof is by induction on k. Base case is when k = 1 and follows from

Equation 5.4 of [AM05] which is established to be true in our setting also. Suppose

the claim holds for k ≤ l and let k = l + 1. From the induction hypothesis we get

that

Pr
Ll∈Ll

[
Pr

u∈OLl

[
fi1(u) = · · · = fil(u) = 1

]
≥

1
2l2(t+2)

]
≥

1
2l(t+2)

(3.3)

Like in [AM05] put c1 = 2l2(t+2), c2 = 2l(t+2) and c3 = α. Note that the bounds 4c1c2c3 ≤

2(l+1)2(t+2), 2c1c1 ≤ 2(l+1)(t+2) and c1c2c3 ≤ 223t
/8 are valid in our setting also as they do

not depend on values of these parameters. Since t ≤ 1/6 log log m, 23t
≤ (log m)1/3

and 223t
≤ 2(log m)1/3 whereas s1/3 is m

1
18α ≥ 2

(log m)( 1
18(log m)1/6

)
= 2(log m)5/6/18 > 2(log m)1/3 .

Hence s1/3/8 ≥ 223t
/8. . Thus, Claim 3.6.6 applies giving us
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Pr
Ll+1∈Ll+1

[
Pr

u∈OLl+1

[
fi1(u) = · · · = fil+1(u) = 1

]
≥

1
2(l+1)2(t+2)

]
≥

1
2(l+1)(t+2)

(3.4)

The proof of the main theorem is completed by noting thatLα = {V} and setting

k in Equation (3.2) to α gives Pru∈OV [∀i ∈ [α], fi(u) = 1] > 0. Thus, there exists a bad

graph u belonging to CLIQUE(m, s)−1(0) on which all of f1, . . . , fα outputs 1, and

hence (u,u+), where u+
∈ CLIQUE(m, s)−1(1) is a graph obtained from u by adding

an edge, which is in G( f ) and not covered by any of the G( fi)’s. A contradiction.

Hence the proof. � �

Since for a bounded fan-in circuit size lower bound of 2m
1

81α implies a depth

lower bound of m
1

81α we get the result.

3.7 Structural restrictions on orientation

In this section we study structural restrictions on the orientation and prove stronger

lower bounds.

3.7.1 Restricting the vertex set indexed by the orientation

We first consider restrictions on the set of vertices4 indexed by the orientation - in

order to prove Theorem 3.1.6. As in the other case, we argue the following lemma,

which establishes the trade-off result. By using the lower bound for KW+ games

for CLIQUE function, the theorem follows.
4Notice that the input variables to the CLIQUE function represents the edges. This makes the

results of this section incomparable with the depth lower bounds of [RW89].
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Lemma 3.7.1. If C is a circuit of depth d computing CLIQUE, with each gate

computing a function whose orientation is such that the number of vertices of the

input graph indexed by the orientation β is at most w
log n , then d is Ω

(
n

4w+1

)
.

Proof. It is enough to solve the KW+( f ) game on the min-term, max-term pairs

which in case of CLIQUE(n, k) is a k-clique and a complete k − 1-partite graph.

Since we are proving a lower bound on a smaller pair of inputs, the lower bound

also holds true for KWP(CLIQUE). We play the same game as in the proof of

Theorem 3.1.2, but instead of sending edges we send vertices included in the edge

set indexed by β with some additional information. If it is Alice’s turn, then x′β

defines an edge sub-graph of her clique. Both Alice and Bob know β and hence

know which vertices are spanned by edges eu,v such that βe(u,v) = 1. So Alice can

send a bit vector of length at most w (in the case of Alice we can handle weight of

orientation up to w), indicating which of these vertices are part of her clique. This

information is enough for Bob to deduce whether any eu,v indexed by β is present

in Alice’s graph or not. Since Bob makes sure that x′β = y′β by modifying his input,

and Alice keeps her input unchanged, Alice knows what modifications Bob has

done to his graph.

Similarly on Bob’s turn, he sends the vertices in the partition induced by yβ and

the partition number each vertex belongs to (hence the log n overhead for Bob) to

Alice. With this information Alice can deduce whether any eu,v ∈ β is present in

Bob’s graph or not. Inductively they maintain that they know of the changes made

to other parties input in each round. Hence the game proceeds as earlier. This

completes the proof of the theorem. �
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3.8 Generalizing DeMorgan circuits, uniform orienta-

tion

A circuit is said to be of uniform orientation if there exists a single orientation vector

β ∈ {0, 1}N such that β is an orientation vector for any function which is computed

by a gate of the circuit.

Note that any De-Morgan circuit is also a uniform orientation circuit with the

β ∈ {0, 1}n βi = 1 if and only if x̄i appears as a literal in the De-Morgan circuit. Hence

Uniform orientation circuits generalize De-Morgan circuits.

Proposition 3.8.1. For any function f and an orientation β of f , there is a Boolean circuit

computing it with uniform orientation where the unique orientation vector associated with

the circuit is β.

Proof. Consider a function f that has orientation β with the associated monotone

function being h. Let Ch be a monotone circuit computing h. Replace all the inputs

xi ⊕ βi where βi = 1 with x̄i and all the inputs xi ⊕ βi where βi = 0 with xi in Ch.

Thus, we get a circuit C computing f , which is De-Morgan and has negations only

on variables in the set S, the set of indices where βi = 1. This implies that for any

function f whose orientation is β, there is a circuit C of uniform orientation β. This

is because, a sub-circuit rooted at any gate g of Cg is also a De-Morgan circuit and

has the set of negated variables S′ ⊆ S. Consider βg to be the characteristic vector

of S′ and the monotone function hg to be the function computed by the monotone

circuit obtained from Cg by replacing all negated variables with new variables.

Hence by definition βg is a valid orientation for g, and βg ≤ β by construction. By

Property 3.2.2, β is also an orientation for g. �
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3.9 NC lower bounds for uniform orientation with a

structural restriction

We now prove Theorem 3.1.7 from the introduction which is stated again for

readability.

Theorem 3.9.1. Let C be a circuit computing the CLIQUE function with uniform orien-

tation β ∈ {0, 1}N such that there is subset of vertices U and ε > 0 such that |U| ≥ logk+ε n

for which βe = 0 for all edges e within U, then C must have depth ω(logk n).

Proof. We prove by contradiction. Suppose there is a circuit C of depth c logk n. In

the argument below we assume c = 1 for simplicity. Without loss of generality, we

assume that |U| = logk+ε n. Fix inputs to circuit C in the following way:

• Choose an arbitrary K n
2−
|U|
2

comprising of vertices from [n] \ U and set those
edges to 1.

• For every edge in
([n]\U

2

)
which is not in the clique chosen earlier, set to 0.

• For every edge between [n] \U and U set it to 1.

Since every edge e(x, y) which has βe = 1 has at least one of the end points in

[n] \ U, by the above setting, all those edges are turned to constants. Thus, we

obtain a monotone circuit C′′ computing CLIQUE(|U|, |U|2 ) of depth at most (log n)k.

In terms of the new input, (log n)k = ((log n)k+ε)
k

k+ε = (|U|)
k

k+ε , this contradicts the

Raz-Wigderson [RW92] lower bound of Ω(|U|), as k
k+ε < 1 for ε > 0. �

Note that for the Clique function, with the above corollary we can handle up

to weight n2

(log n)2+2ε if the vertices spanned by β is up to n
(log n)1+ε and still get a lower

bound of (log n)1+ε. This places us a little bit closer to the goal of handling β of

weight n2, from handling just (log n)1+ε.
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3.10 Achieving structural restrictions on orientation ε

far from NC lower bounds

Any function has a circuit with a uniform orientation β = 1N (|β| = N). We show

that the weight of the orientation can be reduced at the expense of depth, when

the circuit is computing the CLIQUE function.

We now prove Theorem 3.1.8 from the introduction which is stated again for

readability.

Theorem 3.10.1. If there is a circuit C computing CLIQUE with depth d then for any set

of c log n vertices U, there is an equivalent circuit C′ of depth d + c log n with orientation

β such that none of the edges e(u, v), u, v ∈ U has βe(u,v) = 1.

Proof. The proof idea is to devise a KW protocol based on circuit C such that for

e(u, v) where u, v ∈ U the protocol is guaranteed to output in the monotone way,

i.e., xe(u,v) = 1 and ye(u,v) = 0. The modified protocol is as follows:

• Alice chooses an arbitrary clique K n
2
∈ Gx (which she is guaranteed to find as

x ∈ f −1(1)). She then obtains x′ by deleting edges e(x, y) from
(U

2

)
which are

outside the chosen clique K n
2
. Note that since K n

2
∈ Gx′ , f (x′) = 1.

• Alice then sends the characteristic vector of vertices in K n
2
∩ U which is of

length at most c log n to Bob.

• Bob then obtains y′ from y by removing edges in
(U

2

)
which are outside the

clique formed by K n
2
∩

(U
2

)
. By monotonicity of CLIQUE f (y′) = 0.

• If there is an edge e(u, v) ∈ K n
2
∩

(U
2

)
which is missing from y′ Bob outputs the

index e(u, v). Otherwise they run the standard Karchmer–Wigderson game
on x′, y′ using the circuit C to obtain an e(x, y) such that e(x, y) is exclusive to
either Gx′ or Gy′ .

The cost of the above protocol is d + c log n. For any e(u, v) ∈ E(G) \
(U

2

)
, x′e(u,v) =

xe(u,v) and y′e(u,v) = ye(u,v). The protocol never answers non-monotonically(x′e(u,v) =

60



0, y′e(u,v) = 1) for an edge e(u, v) with u, v ∈ U. This is because our protocol ensures

that for any e ∈
(U

2

)
, x′e ≥ y′e. By the connection between KW( f ) and circuit depth,

we get a circuit having the desired properties. �

Thus, we get the following corollary.

Corollary 3.10.2. If there is a circuit C ∈ NCk computing CLIQUE, then there is a circuit

C′ ∈ NCk of uniform orientation β computing CLIQUE such that there are (c log n)k

vertices V′ with none of the edges e(u, v) having βe(u,v) = 1.

Proof. It follows by setting d = O((log n)k) and modifying the protocol to work

over a V′ of size (c log n)k. The analysis and proof of correctness of the protocol

remains the same, but the communication cost becomes O((log n)k) + (c log n)k =

O((log n)k). �

In other words, if we improve Theorem 3.1.7 to the case when the orientation

“avoids” a set of log n vertices (instead of (log n)(1+ε) as done), it will imply NC1 ,

NP.

3.11 Discussion - “natural”-ness of orientation based

depth lower bounds

We end this chapter by discussing how “natural” our proof techniques are. Karch-

mer Wigderson relations connect circuit depth to communication complexity of

an associated relation and it is not known if this approach is ”natural”. The main

reason is that Karchmer Wigderson relations are merely a bridge to communication

complexity and there are many measures which can prove communication lower
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bounds. Though we know some of them are ”natural” there are other measures

which are believed not to be. Moreover, though in the case of two party commu-

nication complexity measures like Rank, Discrepancy etc., satisfy properties of a

natural proof, they are known to be natural only for a function. But Karchmer

Wigderson relations is inherently a relation and it is associated with not one but

many communication matrices. Hence even these measures which are known to

be natural for functions are not known to be natural properties for relations like

Karchmer Wigderson relations. This is because the properties like Rank, Discrep-

ancy etc are known to be constructive for functions but we do not know if they are

“constructive” for relations.
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CHAPTER 4

Learning sparsely oriented circuits

In this chapter we further explore the measure of non monotonicity we introduced,

orientation, by studying the associated learning problem. One of the central themes

of learning theory is to learn Boolean functions or, as it is known in the learning

community, to learn concepts. The main idea is that there is an unknown function

called the concept, say f : {0, 1}n → {0, 1} that we would like to “learn”, using

minimal number of queries to f of the which are evaluations of f at various in-

puts called training data, up to an error parameter ε called “accuracy”. Blais et.

al [BCO+15a] came up with a learning algorithm under the uniform distribution

membership query model for learning n variable functions computed by Boolean

circuits having at most t negations to error ε in time nO(2t √n/ε). Using our char-

acterization of minimal orientation of a function, and the learning algorithm of

Blais et. al ([BCO+15a]) we come up with a learning algorithm under the uniform

distribution membership query model for learning n variable functions computed

by Boolean circuits whose weight of orientation is at most w to error ε in time

nO(w
√

n/ε).

Blais et. al ([BCO+15a]) also proved a matching learning lower bound by

establishing for any k : N → N the existence of a family H k of balanced1 k(n)

alternating2 functions such that, for any sufficiently large n, ε > 0, 2 ≤ k ≤ n1/4

and k7/3/n1/6
≤ ε ≤ 1/2 − c, learningH k to accuracy 1 − ε requires 2Ω(k

√
n/ε). Using

our characterization of orientation, we show that this family of functions H k has
1A Boolean function f is said to be balanced if | f−1(0)| = | f−1(1)|
2on any chain of the hypercube function changes from 1 to 0 on at most k(n) edges



minimal weight of orientation equal to the number of inputs, the maximum pos-

sible. Thus, we show that their lowerbound strategy does not give lower bounds

for learning sparsely oriented circuits.

Based on the techniques employed in the lower bound of [BCO+15a] i.e., hard-

ness amplification of learning under composition of functions [FLS11], we come up

with an information theoretic noise model similar to that of [O’D04]. We suggest

expected bias under this noise model as the right parameter for studying the hard-

ness amplification of composition of functions. We show a partial result suggesting

that expected bias under the newly defined noise model is a right parameter for

certain families of top functions, like REC-3-MAJ. Based on this intuition we also

state a conjecture on hardness amplification of learning a specific composition of

functions tailored for sparse orientation.

Though we are unable to obtain a learning lower bound for limited orientation

functions, we conclude the chapter with important open problems which when

solved, assuming the conjecture, would give such a lower bound but are also of

independent interest in Fourier analysis.

The results that appear in this chapter are from our work that appear in [Kor17].

4.1 Limited non-monotonicity and learning

Monotone functions are central to learning theory. One of the early breakthrough

algorithms for learning a class of functions, was the uniform distribution learning

algorithm for monotone functions ([BT96]) devised by Bshouty and Tamon. Thus, a

natural step is to study the learning problem for non-monotone Boolean functions.

Blais et. al ([BCO+15a]) studied learning functions computed by circuits with
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at most t negations, under the uniform distribution model. They proved near

matching upper and lower bounds for this learning problem.

Their uniform distribution learning algorithm is based on an alternate char-

acterization of inversion complexity of Boolean functions. They proved that if a

function can be computed by at most t negations, then it can be written as parity

or complement of parity of t threshold functions. They use this characterization

to bound a Fourier analytic parameter of the function called influence as function

of t. They combine the bound on influence along with the algorithm for learning

monotone functions by Bshouty and Tamon [BT96], also based on influence of the

function, to get a uniform distribution learning algorithm.

To prove the matching lower bound, they use the idea of hardness amplifica-

tion of learning under the composition of functions. The high level overview of

the argument is to first prove strong lower bounds for learning monotone func-

tions to “high” accuracy. Using hardness amplification for learning from [FLS11],

the authors lift it to a learning lower bound for learning monotone functions up

to “moderate” accuracy. The hardness amplification for learning theorem from

[FLS11] is based on O’Donnell’s work on on hardness amplification within NP

[O’D04]. The basic idea to lift the hardness of a given function h using a function

g, which is preferably monotone or even of limited inversion complexity, is by

feeding multiple independent copies of h to g. The setting is similar to that of the

XOR-lemma, but as ⊕ has the highest inversion complexity possible over all n-bit

functions it is not particularly suited for the purpose of lifting monotone results

to monotone, or to limited inversion complexity. The main intuition is that to lift

the hardness under composition, we can use a function g which has high “noise

sensitivity”. A function is noise sensitive if its value changes with high probability
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when its inputs are perturbed with small “random noise”.

To lift the result of learning monotone functions to “moderate accuracy” to

that about learning limited negation functions to “moderate accuracy”, Blais et. al

([BCO+15a]) use a function which acts like the⊕ function in the middle layers of the

hyper cube and is thus very sensitive to noise. This function also has the desired

inversion complexity and hence the hardness amplification lemma ([FLS11, Theo-

rem 12]) gives the matching lower bound for learning limited negation functions.

In this chapter, we study the learning problem for sparsely oriented func-

tions. The motivation is that orientation is another measure of non-monotonicity

of Boolean functions. And like inversion complexity of functions, we have proved

in Chapter 3 that it is a robust measure. Like Markov’s characterization of inver-

sion complexity in terms of alternation number of the hypercube, we characterized

orientation in terms of the axis of non-monotone edges in the hypercube.

Because of the characterization of orientation, we can show that a weight ori-

entation at most w function is computed by a circuit of at most log w negations.

And hence the learning upper bound for functions computed by log w negations

from [BCO+15a] gives a learning upper bound for w-orientation functions.

Next we turn to the lower bound problem. We first show why the lower

bound approach of [BCO+15a] et. al doesn’t work for us. The main hurdle is in

the last stage of their argument where multiple copies of a monotone function h

are fed as inputs of a function g which is of low inversion complexity. Such a

composition doesn’t increase the inversion complexity of the combined function,

but the orientation of the combined function can increase arbitrarily.

An intuitive strategy to get around the difficulty is to compose g with two kinds

of functions, one which is monotone, and another which is of limited orientation
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w. We turn to the original hardness amplification setting of O’Donnell [O’D04]

and come up with an information theoretic noise model for composing functions

tailored for orientation. We suggest Expected Bias under this noise model as the

right parameter for hardness amplification. We also establish a theorem which

furthers the intuition as to why expected bias is the right parameter for our noise

model, for certain classes of functions. But in the “noise regime” we propose,

analyzing expected bias becomes fairly complicated as one function is harder than

the other, resulting in the coordinates noisier than the others. We conclude the

chapter by stating a conjecture which can help establish learning lower bounds for

sparsely oriented circuits.

The rest of the chapter is organized as follows. In Section 4.2, we give the de-

tails of the learning algorithm for sparsely oriented functions. In the next section,

Section 4.3 we outline a specific composition of functions for hardness amplifi-

cation tailored for orientation and an information theoretic noise model for this

composition.

4.2 A learning algorithm

In this section we show how to use the properties of orientation along with the

limited negation learning algorithm to obtain an algorithm for learning functions

of sparse orientation.

Recall that we say that a circuit C is weight w oriented if every internal gate

of C computes a function which has an orientation β with |β| ≤ w. The weight

restriction on a circuit thus defined is a semantic restriction as we are only limiting

the weight of orientation of the functions computed at sub-circuits of C. But we
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do not place any restriction on how (especially in terms of actual negation gates)

the functions at sub-circuits are computed in C.

We use the property of orientation that the orientation vector corresponding to

the minimum weight of a function is unique, proved in Chapter 3 (Property 3.2.4),

to get a learning algorithm from the learning algorithm for learning circuits with

limited negation gates. Let Cn
w denote the family of circuits with n inputs and of

weight of orientation at most w. For any Boolean function f computed by such a

circuit the weight of orientation at most w. This is because the root gate of such a

circuits computes f and has weight of orientation like any other internal gate of

the circuit at most w.

We now show that any function of orientation at most w can be computed with

a circuit having at most log w negations. As a first step we show that there is a

De-Morgan circuit computing f with at most w negated literals. Then we use a

result of Fischer [Fis75] to get a circuit which computes all these w negated literals

using at most log w negations.

Lemma 4.2.1. For any function f of weight of orientation at most w, there exists a

circuits which computes f with at most log w negations

Proof. Since the minimal weight of orientation of f is w, by Property 3.2.4, there

exists a monotone function h and a unique orientation vector β having at most w

ones such that, ∀x ∈ {0, 1}n , f (x) = h(x, (x ⊕ β)). Consider any monotone circuit

computing h. To correctly compute f , h additionally needs only w negated vari-

ables, say xi1 , . . . , xiw . By a result of Fischer [Fis75] these negated variables can be

computed by a circuit having at most log w negations. Hence it follows that f is

computed by a circuit of at most log w negations. �
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This combined with the learning algorithm of Blais et. al [BCO+15b] stated

below gives a straight forward learning algorithm for limited orientation circuits.

Theorem 4.2.2 (Theorem 1.4, [BCO+15b]). There is a uniform-distribution learning

algorithm which learns any unknown Boolean function f which is computed by a circuit

of at most t negations, from random examples to error ε in time nO(2t √n/ε).

We now prove the learning upper bound for sparsely oriented circuits.

Theorem 4.2.3. There is a uniform-distribution learning algorithm which learns any

unknown Boolean function f which is computed by a circuit of at most w weight of

orientation, from random examples to error ε in time nO(w
√

n/ε)

Proof. By Lemma 4.2.1, f is computed by a circuit having at most log w negations.

Hence the Theorem 4.2.2 of Blais et. al [BCO+15a] with t = log w implies the

theorem.

�

4.3 Towards learning lower bounds : noise models

4.3.1 Overview of noise model used by Blais et. al

In this section we give a high-level overview of the hardness amplification based

learning lower bound in [BCO+15b]. They first prove a lower bound for learning

monotone circuits to high accuracy. Since the algorithm has to learn to really high

accuracy (read constant error), the following simple claim is true.

Claim 4.3.1. Claim 3.13 of [BCO+15a] There exists a class of balanced monotone Boolean

functions G = {Gm}m∈N and a universal constant C such that, for any constants 0 < α ≤
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1/10, learning Gm to error 0 < ε ≤ α/
√

m requires at least 2C×m queries.

The proof is an adversarial argument where they consider a slice function as

the candidate function for the lower bound. A slice monotone function on n-bits

(assume that n is even) is a function which is guaranteed to be 0 on inputs which

have strictly less than n/2 1’s and 1 on inputs which have strictly more than n/2

1’s in them. The function can take any value on the middle layer of the hypercube,

i.e., inputs x which have exactly n/2 1’s in them. The proof relies on the fact that,

the middle layers contains almost a constant fraction of the total number of points

in the hypercube. Hence any learning algorithm which queries only 2Cm points for

an appropriate value of C, misses a constant fraction of points in the middle layer.

Hence the adversary can set these points arbitrarily to increase the error.

Now the authors use composition with a function which is very stable under

noise to get a function which is hard to learn even up to “moderate” accuracy.

The hardness-amplification scenario used here is similar to the one used by

O’Donnell [O’D04] for hardness amplification within NP. We start with the

“mildly” hard function we obtained earlier, say h : {0, 1}m → {0, 1}, and compose it

with a function, say g : {0, 1}r → {0, 1}, which is very sensitive to noise. The com-

position is the standard composition of two Boolean functions denoted by g ⊗ h :

{0, 1}rm
→ {0, 1}, defined as g ⊗ h(x1, . . . , xr) = g(h(x11, . . . , x1m), . . . , h(xr1, . . . , xrm)).

Noise sensitivity of g is measured using ExpBiasδ(g). Before we define ExpBias,

we need to define the bias( f ) of a Boolean function. The bias( f ) as the name

suggests is the absolute difference between number of zeros and ones of f , more

formally bias( f ) =|| f −1(0) | − | f −1(1) ||. Thus, ExpBiasδ(g) is defined as the ex-

pectation of the bias of g under random restrictions where each input of g is left

unrestricted with probability δ, set to 0 with probability (1 − δ)/2, and to 1 with
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probability (1− δ)/2. More formally, ExpBiasδ(g) = Eρ∈Pr
δ

[
bias(gρ)

]
where ρ ∈ Pm

δ is

a random restriction which leaves each of the r inputs of g unfixed with probability

δ and sets them to 1 or 0 with equal probability otherwise.

The reason ExpBiasδ(g) is the right parameter for studying hardness amplifi-

cation of composition of functions is the following information theoretic scenario

modeling average case hardness of functions. The hardness of computing or

learning each h(xi) is modeled by setting the input to g, say zi to 0 with probability

(1 − δ)/2 and to 1 with probability (1 − δ)/2. And the coordinate zi is un-restricted

with probability δ. This models the scenario that there is a δ fraction of inputs on

which h is balanced and where h is impossible to compute, and hence zi = h(xi)

looks like a random bit to the learning algorithm or the circuit trying to compute

g⊗h. On the remaining 1−δ fraction, we even assume in our model the circuit can

correctly compute/learn the function. The assumption of hard core set on which

the function h has equal number of zeros and ones and is almost random to the cir-

cuit/learning algorithm is based on the Hardcore set lemma of Impagliazzo [Imp95]

adapted by [O’D04] to suit the context of hardness amplification within NP. Thus,

in this information theoretic scenario of hardness, composing a 1− δ hard function

h with a function g is reduced to correctly computing g on inputs zi where each zi is

set to 0 with probability (1−δ)/2, to 1 with probability (1−δ)/2 and is un-restricted

with probability δ. Thus, we are assuming even that the circuit knows which bits

zi are random and which are set. In this scenario, it seems like the best strategy for

the circuit/learning algorithm to compute g on z1, . . . , zr, is to output the biasρ(g).

[O’D04] proves this formally by showing that any probabilistic procedure which

tries to guess the value of g, cannot have an advantage ε more than bias(g) unless

it can distinguish between two end points of a hyper-edge3 with non-negligible

3x, y ∈ {0, 1}n such that x and y differ only in one bit
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probability.

Then [O’D04] uses this idea to prove that the expected bias of g essentially

characterizes the hardness of computing the composed function g⊗h. Feldman et.

al [FLS11] generalize this idea to the setting of hardness amplification for learning

by proving the following theorem.

Theorem 4.3.2 (Theorem 12 of [FLS11]). Fix g : {0, 1}r → {0, 1}, and let F be a class of

m-variable Boolean functions such that for every f ∈ F , bias f ≤ 1
2 + ε

8r . Let A be a uniform

distribution membership query algorithm that learns g ⊗ F to accuracy ExpBiasγ(g) + ε

using T(m, r, 1/ε, 1/γ) queries. Then there exists a uniform-distribution membership query

algorithm B, that learns F to accuracy 1− γ using O(T(poly(m, r, 1/ε, 1/γ)) membership

queries.

Another important idea that both [FLS11] and [BCO+15a] derive from [O’D04]

is that, though estimating expected bias of a Boolean function is hard. But an-

other well known Fourier analytic parameter of Boolean functions called noise

stability is a good approximation for expected bias. The noise stability, denoted

by NoiseStabδ(g), is defined to be the probability that the value of g doesn’t

change for a random input when it is perturbed by a noise δ. Given an x ∈

{0, 1}r, the noise δ applied to x is a random variable denoted by Nδ(x) obtained

by flipping each bit of x with probability δ. Thus, the formal definition of

NoiseStabδ(g) = Pr[g(x) = g(Nδ(x))] where the probability is over a uniformly

and randomly chosen x from {0, 1}r and the noise. Note that all quantities dis-

cussed so far like bias, expected-bias, noise stability are all in the range [1/2, 1].

For any quantity Q in the range [1/2, 1], the corresponding quantity Q∗ defined

to be Q∗ = 2(Q − 1/2) takes it to the range [0, 1]. This transformation is helpful

in capturing the relationship between noise stability and expected bias. [O’D04]
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proved that NoiseStabδ(g)∗ ≤ ExpBias2δ(g)∗ ≤
√

NoiseStabδ(g)∗.

The first step in lifting the hardness of learning monotone functions to high

accuracy to that of learning monotone functions to moderate accuracy, is the ap-

plication of the above theorem with a monotone function g which is balanced and

has very small noise stability. This implies that the expected bias of the function

is very low, and hence learning this function even to moderate error is impossible.

The function g used in the composition g ⊗ h is the monotone function obtained

by Mossel and O’Donnell in [MO03]. After doing this the authors obtain a family

of functions which are balanced, monotone and hard to learn even to moderate

accuracy.

The second step is to lift this hardness to a function which has limited inversion

complexity, i.e., one which is computed by a circuit with few negations. Blais et.

al [BCO+15b] uses a top function g which is the parity function restricted to k-layers

around the middle layer of the Boolean hypercube of dimension k2. Formally,

Definition 4.3.3. For any odd r ≥ k ≥ 1, let PAR’k,r be the symmetric Boolean

function on r inputs defined as follows: for all x ∈ {0, 1}r ,

PAR’k,r(x) =



0 |x| > r+k
2

0 |x| < r−k
2

PARr(x) Otherwise

By showing PAR’k,k2 has enough correlation to parity on k bits, Blais et. al

([BCO+15a]) establish that this function has low noise stability and thus low ex-

pected bias. Hence one more application of Theorem 4.3.2 gives them the desired

result, as PAR’k,k2 can be computed with log k negations. The final function which
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is a composition of a monotone function with PAR’k,k2 can also be computed with

log k negations.

4.3.2 A candidate noise model for orientation

Unlike the number of negation gates in a circuit, which is a structural restric-

tion, orientation is a semantic restriction. Thus, the non-monotonicity of the top

composition function can affect the non-monotonicity of the bottom part after

composition. We note that though PAR’k,k2 requires only log k negations (as it is

k-alternating), it has maximum possible orientation. This follows from the Propo-

sition 3.2.3 of Chapter 3 and the fact that for any i ∈ [k2] we can find an (x, x + ei)

such that PAR’k,k2 changes anti-monotonically. By definition of PAR’k,k2 and the

fact that it is symmetric, either PAR’k,k2(0k2/21k2/2) or PAR’k,k2(0k2/2−11k2/2+1) must be

1 and the entire layer above it will be all 0’s. Hence for any i ∈ [k2] we can find an

(x, x+ei) where change happens anti-monotonically. This is a problem as we do not

get any guarantees on the orientation of the final function after this step, other than

the naive bound that it might be the maximum possible. Hence the approach of

Blais et. al [BCO+15a] does not give a lower bound for learning Boolean functions

whose orientation is limited.

But we note that this approach gives a learning lower bound for functions

whose orientation is the maximum possible.

Since any function on n variables has weight of orientation at most n, we get the

following easy lemma by setting k to be the maximum possible value in Corollary

3.5 from [BCO+15a].

Lemma 4.3.4. Learning the class of weight of orientation n functions to accuracy
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1 − ε in the uniform distribution membership-query model requires 2Ω((n1/28 √n)/ε)

membership queries, for any ε ∈ [1/n1/12, 1/2 − c]

Proof. By setting k = n1/28 in 3.5 from [BCO+15a] we get a learning lower bound

2Ω((n1/28 √n)/ε) membership queries for the family of n1/28-alternating functions. Any

function in this family has n inputs and thus can have weight of orientation at most

n. Hence learning weight of orientation at most n functions is at least as hard as

learning this family. �

A natural strategy to get around the problem of arbitrary orientation as a result

of composing a non-monotone function with a monotone function in [BCO+15a],

is to use the top function g in the second application of Theorem 4.3.2 to be

monotone. And to get a final function which has limited weight of orientation, we

can compose g with two functions f1 and f2. We choose f1 to be the hard to learn

(even up to moderate accuracy) function with maximum weight of orientation

from Lemma 4.3.4 and f2 to be the hard to learn (even up to moderate accuracy)

monotone function from [BCO+15a]. This way we can ensure that the orientation

of the final function is not the maximum, and is controlled by the number of

f1’s we choose to feed to g. Hence we are interested in the following hardness

amplification scenario (and associated learning lower bounds) :

Let g : {0, 1}k → {0, 1} be a Boolean function. And let f1 : {0, 1}n → {0, 1} and

f2 : {0, 1}n → {0, 1} be two Boolean functions which are 1 − δ1 and 1 − δ2 hard

respectively for size s circuits. The hardness amplification considers the function

g ⊗N1 ( f1, f2) : {0, 1}nk
→ {0, 1} for any N1 ⊆ [k] and is defined as follows :

g ⊗N1 ( f1, f2)(x1, . . . , xk) , g (h1(x1), . . . , hk(xk))
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where for any i ∈ [k], hi is the function f1 if i ∈ N1 and is the function f2 otherwise.

The candidate noise model : In the information theoretic hardness scenario de-

fined in [O’D04], this would correspond to an adversary trying to compute g on

“corrupted” bits z1, . . . , zk where for any i ∈ N1, zi = f1(xi) with probability 1 − 2δ1

and in this case the adversary knows that the bit is correct (as in the noise model

of [O’D04]). Otherwise it is a random bit which has no correlation with f1(xi), with

probability 2δ1. For any i ∈ [k] \ N1, zi = f2(xi) with probability 1 − 2δ2 and in

this case as before we know the bit is correct, and is a random bit which has no

correlation with f2(xi) with probability 2δ2 otherwise.

It is natural to assume that the best strategy in this case, as in the noise model

of [O’D04], is for the adversary to guess the value of g according to the expected

bias of g under restriction ρ sampled uniformly at random from Pk
N1,δ1,δ2

defined

below.

ρ(i) =



? with probability 2δ1, i ∈ N1

0 with probability 1−2δ1
2 , i ∈ N1

1 with probability 1−2δ2
2 , i ∈ N1

? with probability 2δ2, i ∈ [k] \N1

0 with probability 1−2δ2
2 , i ∈ [k] \N1

1 with probability 1−2δ2
2 , i ∈ [k] \N1

In the rest of the chapter we will denote by ExpBiasN1,δ1,δ2
(g) = Eρ∈Pk

N1 ,δ1 ,δ2

[
bias(gρ)

]
.

Under the noise model defined above, the success probability of the best strat-

egy is intuitively the expected bias of g. To prove that guessing according to the

expected bias of g is the best strategy for an adversary, we need to show that if
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there is a probabilistic procedure p guessing the value of gρ on a randomly chosen

input of the hypercube, which has advantage more than biasρ(g) + ε, then it can

detect at least one coordinate i ∈ [k1] with advantage better than δ1 and at least one

coordinate i ∈ [k2] with advantage better than δ2. We do not know how to prove

this for a general g. But if the function g is symmetric, we can show that one of the

key ingredients, the proof of [O’D04, see Lemma 5] can be extended to our noise

model. Recall that the Lemma 5 of [O’D04] claims that :

Lemma 4.3.5. Lemma 5 [O’D04] Let Bk denote the k-dimensional Hamming cube,

and suppose h : Bk → {0, 1} and p : Bk → [0, 1]. Further suppose that,

2−k

 ∑
y∈h−1(0)

p(y) +
∑

y∈h−1(1)

(1 − p(y))

 ≥ bias(h) + ε

Then there exists an edge (z, z′) in Bk such that |p(z) − p(z′)| = Ω
(
ε/
√

k
)

But it could be that all such edges (z, z′) come from a specific dimension i alone,

which in the worst case could be fed by a not-so-hard to learn monotone function.

But we can make sure that this does not happen if the function h is a symmetric

function. More formally we prove the following theorem.

Theorem 4.3.6. Let Bk denote the k-dimensional Hamming cube, and suppose h : Bk →

{0, 1} is a symmetric function and p : Bk → [0, 1]. Further suppose that,

2−k

 ∑
y∈h−1(0)

p(y) +
∑

y∈h−1(1)

(1 − p(y))

 ≥ bias(h) + ε

Then for any dimension i ∈ [k] there exists a p′ : Bk → [0, 1] and a dimension i edge (z, z′)

in Bk such that |p′(z) − p′(z′)| = Ω
(
ε/
√

k
)

Proof. Let (z, z′) be the edge in Bk of say dimension j, obtained by applying
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Lemma 4.3.5 to the distinguisher p. We would now like to come up with with

another edge for any other dimension i. Let π ∈ Sk be π(i) = j,π( j) = i and for any

l ∈ [k], l , i, l , j, π(l) = l. Define a new distinguisher p′ such that p′(z) = p(π(z)).

We now show that the distinguisher p′ has at least the advantage of the distin-

guisher p.

2−k

 ∑
y∈h−1(0)

p′(y) +
∑

y∈h−1(1)

(1 − p′(y))

 = 2−k

 ∑
y∈h−1(0)

p(π(y)) +
∑

y∈h−1(1)

(1 − p(π(y)))


= 2−k

 ∑
π(y)∈h−1(0)

p(π(y)) +
∑

π(y)∈h−1(1)

(1 − p(π(y)))

(
∵ h is symmetric, h(π(y)) = h(y)

)
≥ bias(h) + ε

By Lemma 4.3.5, edge (z, z′) has |p(z) − p(z′)| = Ω
(
ε/
√

k
)
. But that means for

(π−1(z), π−1(z′)), we have that |p′(π−1(z))−p′(π−1(z′))| = |p(π(π−1(z)))−p(π(π−1(z′)))| =

|p(z) − p(z′)| = Ω
(
ε/
√

k
)
. Note that (π−1(z), π−1(z′)) is a dimension i edge. This is

because (z, z′) is an edge of dimension j, and π as well as π−1 maps j to i and vice

versa. �

Symmetric functions, like MAJ, have high noise stability whereas for the hard-

ness amplification we need top functions of low noise stability. But we can exploit

the fact that the above proof works even if g was “locally symmetric” like Rec-3-

Majority function. The Rec-3-Majority function, as the name suggests, groups its

input bits into chunks of 3 bits and then computes the majority of each chunk and

then again groups these bits into chunks of 3 bits and computes the majority of

each such chunk, and so on and so forth until a single bit is obtained. More formally,

REC-3-MAJ(x11, . . . , xn3) = REC-3-MAJ(MAJ3(x11, x12, x13), . . . ,MAJ3(xn1, xn2, xn3)). This

function is locally symmetric, i.e., if any two inputs to any of MAJ3 at the bottom
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are swapped the function value remains the same. We thus define what it means

to be locally symmetric as follows:

Definition 4.3.7. A function g : {0, 1}r → {0, 1} is said to be locally symmetric with

respect to a subset N1 ⊆ [r], if there is π ∈ Sr and indices i1, i2 ∈ N1, j1, j2 ∈ [n] \N1

such that for all x ∈ {0, 1}r, g(x) = g(π(x)) and π(i1) = j1 and π( j2) = i2.

To exploit the local symmetry of REC-3-MAJ, we would feed every chunk of 3

bits at the bottom level with one input from f1 and the other two inputs from f2.

But since we are feeding in every three inputs, two inputs from f2, the resulting

composed function can have weight orientation as high as 1/3 of the input size.

By changing Rec-3-Majority with Rec-c-Majority we can obtain lower bounds for

learning functions of weight of orientation at most 1/c of the maximum possible.

Thus, our lower bound strategy works for weight of orientation a multiplicative

factor of the input size.

But there is another issue with our strategy in general. Since our strategy

crucially depends on the top function being monotone, the best noise sensitivity

we can obtain is the best that can be achieved by a monotone function. Mossel

and O’Donnel [MO03] proved an upper bound on noise sensitivity of monotone

functions by proving a lower bound on their noise stability. More formally they

proved that for any function g : {0, 1}r → {0, 1}which is monotone, its noise stability

under a noise operator Nδ, is at least (1− δ)
√

2/π+o(1)
√

r. In our setting of noise, there

are two operators, Nδ1 and Nδ2 where δ1 < δ2. It is easy to see that the noise stability

under this operator is at least the noise stability under the standard noise operator

Nδ2 as each coordinate is flipped with equal or higher probability than earlier.

Thus, the minimum noise stability that can be achieved is at least (1− δ2)
√

2/π+o(1)
√

r.

This limits the potential lower bound that can be achieved to be 2Ω(
√

w
√

n/ε) instead
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of 2Ω(w
√

n/ε). Hence we would like the top function to have as small a noise stability

as possible while still being locally symmetric. We can achieve this by using the

monotone function obtained by Mossel and O’Donnel (Theorem 3 of [MO03])

which has noise stability close to the lower bound. But this function is not locally

symmetric. To circumvent this issue we can consider the function from [MO03]

combined with majority of three inputs each where we would feed every chunk

of 3 bits at the bottom level with one input from f1 and other two inputs from f2.

Since the top function is a function of high noise sensitivity and majority is applied

only on 3 bits and also is a function of high noise sensitivity it is safe to assume

that even under the new noise model the combined top function has high noise

sensitivity.

Towards a learning lower bound using the noise model : Based on the intuition

from the noise model, and the Theorem 4.3.6 supporting expected bias under

the noise model as the right parameter for hardness amplification, we make a

conjecture about hardness amplification for learning under this noise model, along

the lines of the Theorem 12 of Feldman et. al [FLS11].

Conjecture 4.3.8. Fix g : {0, 1}r → {0, 1} and subset N1 ⊆ [r] such that g is locally

symmetric with respect to N1. Let F1,F2 be classes of m-variable Boolean functions

such that for every f from F1 or F2, bias f ≤ 1
2 + ε

8r . Let A be a uniform distribution

membership query algorithm that learns g⊗N1 (F1,F2) to accuracy ExpBiasγ(N1,δ1,δ2)(g)+ε

using T(m, r, 1/ε, 1/γ) queries. Then there exists a uniform-distribution membership query

algorithm B1, that learns F1 to accuracy 1 − δ1 using O(T.poly(m, r, 1/ε, 1/γ)) queries.

Also there exists a uniform-distribution membership query algorithm B2, that learns F2 to

accuracy 1 − δ2 using O(T.poly(m, r, 1/ε, 1/γ)) queries.
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Assuming the conjecture above, all that is to be done to prove a learning lower

bound for sparsely oriented circuits is to analyze the expected bias of a monotone

function g under the noise model we defined earlier, ExpBiasγ(N1,δ1,δ2)(g). But we

do not know how to analyze the expected bias or noise stability of functions

under the noise operator we defined. The noise operator we study is far more

complicated than the one used by [O’D04]. The ρ we defined can be thought of

as two different noise operators on two different set of inputs. It is no more clear

how to analyze noise stability of functions under ρ as ρ acts as different noise on

different part of inputs. We point out why the two methods of estimating noise

stability employed by [O’D04] don’t work for our noise regime. The way [O’D04]

estimates noise stability of a function like REC-3-MAJ is using the fact that if h is a

balanced Boolean function, and g is any Boolean function, then NoiseStabδ(g⊗h) =

NoiseStab1−NoiseStabδ(h)(g). This fact follows straight forwardly from the definition

of NoiseStab itself. But we do not know how to prove such a theorem under the

noise operator we defined and it does not follow from the definition. Another

approach [O’D04, Proposition 9] to bound the noise stability uses the Fourier

analytic characterization that NoiseStabδ(h)∗ =
∑

S⊆[n](1 − 2δ)|S|ĥ(S)2. Let us denote

by N1 ⊆ [n], the indices where the noise operator Nδ1 acts, and N2 = [n] \ N1 be

the indices where the other noise operator, Nδ2 acts. The equivalent expression

for noise stability under this regime becomes, NoiseStabN1,δ1,δ2(h)∗ =
∑

S⊆[n](1 −

2δ1)|S∩N1| (1− 2δ2)|S∩N2| ĥ(S)2. We do not know how to analyze this expression to get

an upper bound for noise stability. We leave this as an interesting open problem.

Open Problem 1. Analyze the expected bias of REC-3-MAJ : {0, 1}k → {0, 1} under

the noise model we defined. That is analyze,

ExpBiasγ(N1,δ1,δ2)(REC-3-MAJ) = Eρ∈Pk
N1 ,δ1 ,δ2

[
bias(REC-3-MAJρ)

]
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where ρ ∈ Pk
N1,δ1,δ2

is defined to be,

ρ(i) =



? with probability 2δ1, i ∈ N1

0 with probability 1−2δ1
2 , i ∈ N1

1 with probability 1−2δ2
2 , i ∈ N1

? with probability 2δ2, i ∈ [k] \N1

0 with probability 1−2δ2
2 , i ∈ [k] \N1

1 with probability 1−2δ2
2 , i ∈ [k] \N1

As pointed out earlier REC-3-MAJ might not have good enough noise stability

to get 2Ω(
√

w
√

n/ε) lower bound for learning circuits of orientation at most w. But

we believe that it is an easier function to analyze than the the monotone function

obtained by Mossel and O’Donnel (Theorem 3 of [MO03]). This is because the

function of [MO03] is based on a probabilistic construction of Talagrand [Tal96]

and is a random CNF formula. But to obtain the best lower bound we would

like to analyze the expected bias of the Mossel and O’Donnels function. To ex-

ploit the intuition of Theorem 4.3.6, we would like to make this function locally

symmetric, as suggested earlier, without loosing much of its noise sensitivity. Let

g : {0, 1}r → {0, 1} be the function in Theorem 3 of [MO03]. And let h : {0, 1}c → {0, 1}

be the MAJc function. The monotone function fc : {0, 1}rc
→ {0, 1} is defined to be

f (x1,1, . . . , x1,c, . . . , xr,c) = g(h(x1,1, . . . , x1,c), . . . , h(xr,1, . . . , xr,c)). The function f is lo-

cally symmetric among the coordinates (xi,1, . . . , xi,c) for any i ∈ [r]. Thus, we

would like to analyze the expected bias of this function under an N1 ⊆ [rc], of coor-

dinates where the first noise operator Nδ1 operates, which exploits local symmetry

of f . We provide a non-trivial, yet simple case which would help in obtaining

a learning lower bound for circuits of weight of orientation at most 1/3rd of the
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maximum.

Open Problem 2. For c = 3, N1 = {(i, 1), (i, 2)}i∈[r], analyze the expected bias of

f3 : {0, 1}3r
→ {0, 1} under the noise model we defined. That is analyze,

ExpBiasγ(N1,δ1,δ2)( f3) = Eρ∈Pk
N1 ,δ1 ,δ2

[
bias( f3ρ)

]

To summarize, our strategy can be executed to get a learning lower bound

for Boolean functions whose weight of orientation is limited, assuming Conjec-

ture 4.3.8, provided one can analyze noise stability of Boolean functions under the

noise model where there are two noise operators operating on two parts of the

input to the function.
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CHAPTER 5

Branching program lower bounds using projective

dimension

We study branching program lower bounds using projective dimension, a graph

parameter (denoted by pd(G) for a graph G), introduced by Pudlák and Rödl (1992).

For a Boolean function f (on n bits), Pudlák and Rödl associated a bipartite graph G f

and showed that size of the optimal branching program computing f (denoted by

bpsize( f )) is at least pd(G f ) (also denoted by pd( f )). Hence, proving lower bounds

for pd( f ) imply lower bounds for bpsize( f ). Despite several attempts (Pudlák and

Rödl (1992), Rónyai et.al, (2000)), proving super-linear lower bounds for projective

dimension of explicit families of graphs has remained elusive. We observe that

there exists a Boolean function f for which the gap between the pd( f ) and bpsize( f ))

is 2Ω(n). Motivated by the argument in Pudlák and Rödl (1992), we define two

variants of projective dimension - projective dimension with intersection dimension

1 (denoted by upd( f )) and bitwise decomposable projective dimension (denoted by

bpdim( f )). We show the following results :

(a) We observe that there exist a Boolean function f for which the gap between
upd( f ) and bpsize( f ) is 2Ω(n). In contrast, we also show that the bitwise
decomposable projective dimension characterizes size of the branching pro-
gram up to a polynomial factor. That is, there exists an 0 < ε < 1 such that
for any function f ,

bitpdim( f )/6 ≤ bpsize( f ) ≤ (bitpdim( f ))3+ε

(b) We introduce a new candidate function family f for showing super-polynomial
lower bounds for bpdim( f ). As our main result, we demonstrate gaps be-
tween pd( f ) and the above two new measures for f :



pd( f ) = O(
√

n) upd( f ) = Ω(n) bitpdim( f ) = Ω
(

n1.5

log n

)
(c) Although not related to branching program lower bounds, we derive expo-

nential lower bounds for two restricted variants of pd( f ) and upd( f ) respec-
tively by observing that they are equal to well-studied graph parameters -
bipartite clique cover number and bipartite partition number respectively.

The results that appear in this chapter are from our works that appear in

[KKS16a] and [KKS16b].

5.1 Introduction

In this Chapter we study a combinatorial and linear algebraic approach to proving

branching program lower bounds. This approach was proposed by Pudalk and

Rodl [PR92] in the 90’s. Their idea was to connect branching program size to

a linear-algebraic/combinatorial parameter called Projective Dimension. Projec-

tive dimension is defined as a measure of bipartite graphs. A natural association

between Boolean functions and bipartite graphs can be obtained by partitioning

the set of variables into two arbitrary partitions. The projective dimension of a

bipartite graph G(U,V,E) over a field F is the minimum d, d ∈ N such that there is

an assignment of linear subspaces of Fd to vertices in both partitions such that for

any (u, v) ∈ U × V the corresponding subspaces intersect non-trivially if and only

if (u, v) ∈ E. Pudlák and Rödl showed that the projective dimension of a Boolean

function is upper bounded by deterministic branching program size. Thus, to

lower bound branching program size it is enough to lower bound projective di-

mension.

Pudlák and Rödl [PR92] showed that projective dimension is an interesting

parameter by showing that there exists Boolean functions which require exponen-
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tial projective dimension. But they do this by a counting argument and hence

the resulting lower bound is only for a non-explicit function. But for the goal of

separating P from L we need to show a super polynomial lower bound for an

explicit function. But the best lower bound on projective dimension for an explicit

function that is known is only linear [PR92] in the input length of the function (in

other words the logarithm of the number of vertices in the bipartite graph). Also

this lower bound is for a function (complement of the Equality function which

given two n bit strings checks if they are equal bit by bit) which has linear sized

branching program computing it. Thus, by the Pudlák and Rödl connection, this

functions projective dimension is at most linear. Hence it is impossible to prove

super linear lower bounds on projective dimension of this function.

Though many candidate functions like Payley graphs were suggested [RBG02],

it was not clear how to prove a super linear lower bound on projective dimension

of any of these functions. We thus looked at variants of projective dimension which

are more structured, but still preserve the connection to branching program size.

The results we obtain in this chapter are based on our results from [DKS16].

Pudlák and Rödl proved the upper bound of branching program size on projec-

tive dimension by constructing a projective dimension assignment from a branch-

ing program computing the function. They prove the validity of the assignment

constructed by proving that any intersection between the sub-spaces of u ∈ U and

v ∈ V corresponds to an accepting path in the branching program when the input

is uv. Since in a deterministic branching program there is exactly one accepting

path on any given input, it is easy to note that this assignment has the additional

property that, whenever the subspaces of u and v intersect non-trivially the dimen-

sion of the intersection is exactly 1. That is for every (u, v) ∈ U × V, the dimension
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of the intersection is either 0 or 1. We call this variant projective dimension with

intersection dimension 1. Though we are able to prove a linear lower bound on

this variant for a function whose projective dimension is sub-linear, establishing

a quadratic gap between projective dimension and our variant, we were unable

to improve it to a super-linear lower bound. This is formalized by the following

theorem.

Theorem 5.1.1. For any d ≥ 0, for the function SId (on 2d2 variables, see Definition

5.2.4), the projective dimension is exactly equal to d, while the projective dimension with

intersection dimension 1 is Ω(d2).

We then turn to the important question of gaps between projective dimension

and branching program size. We answer the question by showing an exponen-

tial gap between projective dimension (and even projective dimension with in-

tersection dimension 1) and branching program size. More formally we show

the existence (non-explicit, again via a counting argument) of a Boolean function

which has linear projective dimension but requires exponential sized branching

programs to compute it. This somewhat explains the lack of progress on obtaining

a super-linear lower bound for functions which are believed not to have poly-

nomial size branching programs via projective dimension or via the variant of

projective dimension we proposed.

Inspired by the gap example, we observe another crucial property of projec-

tive dimension assignments constructed by Pudlák and Rödl from the branching

program computing the function. This property captures the essence that such a

projective dimension assignment is “easy to describe”. What we mean by “easy

to describe” is that there are 4n subspaces, 2 for each of the 2n bits such that the

assignment for any vertex is a direct sum of n of these subspace based on each bit
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of binary input labeling the vertex. We define a variant of projective dimension

which captures this property called Bitwise decomposable projective dimension

or bitpdim for short. The definition is made such that the connection to branching

program size is preserved.

From our definition of bitpdim it is not too hard to see that the gap proof does

not apply to bitpdim. We strengthen this intuition by formally proving that there

cannot be a super-polynomial gap between it and branching program size. We

show that branching program size is upper bounded by d3+ε where d is the bitpdim

of the function and 0 ≤ ε < 1 is a constant. Thus, we establish that bitpdim and

branching program size are polynomially related. More formally we prove that:

Theorem 5.1.2. There is an absolute constant c > 0 such that if bitpdim( fn) ≤ d(n) for a

function family { fn}n≥0 on 2n bits, then there is a deterministic branching program of size

(d(n))c computing it.

Our result can also be thought of as an alternative characterization of determin-

istic branching program size using projective dimension. An interesting outcome

of this connection is that any function which is believed to be outside L is a good

candidate function for proving super-linear (and even super-polynomial) lower

bounds for bitpdim. Because if the bitpdim of such a function turns out to be

polynomial it would imply that the function is in L.

We mention one such candidate function and show a super linear lower bound

on the bitpdim of the function. But our proof uses the sub-function counting

method of Nechiporuk. We would like to prove such a result using more direct

algebraic/combinatorial proof than sub-function counting method. We do not yet

know how to prove such a result and it is an interesting open problem.

Since our upper bound on branching program by bitpdim loses a factor of 6 in
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the exponent we do not get any super linear lower bounds from the best known

branching program lower bound [Nec66]. Despite this we are able to show a lower

bound matching the best known branching program lower bound on bitpdim, but

once again using the sub-function counting idea. We do this by proving the

following :

Theorem 5.1.3 (Main Result). For any d > 0, bitpdim(SId) is at least Ω
(

d3

log d

)
.

We remark that Theorem 5.1.3 implies a size lower bound of Ω( n1.5

log n ) for branch-

ing programs computing the function SId (where n = d2). However, note that this

can also be derived from Nechiporuk’s method directly applied on branching pro-

gram size instead of bitpdim. For the Element Distinctness function, the above lin-

ear algebraic adaptation of Nechiporuk’s method for bitpdim gives Ω( n2

log2 n
) lower

bounds (for bitpdim and hence for bpsize) which matches with the best lower

bound that Nechiporuk’s method can derive.

Continuing the quest for better lower bounds for projective dimension, we

study two further restrictions. In these variants of pd and upd, the subspaces

assigned to the vertices must be spanned by standard basis vectors. We denote the

corresponding dimensions as spd( f ) and uspd( f ) respectively. It is easy to see that

for any 2n-bit function, both of these dimensions are upper bounded by 2n.

We connect these variants to some of the well-studied graph parameters. The

bipartite clique cover number (denoted by bc(G)) is the smallest collection of complete

bipartite subgraphs of G such that every edge in G is present in some graph in the

collection. If we insist that the bipartite graphs in the collection be edge-disjoint,

the measure is called bipartite partition number denoted by bp(G). By definition,

bc(G) ≤ bp(G). These graph parameters are closely connected to communication

complexity as well. More precisely, log(bc(G f )) is exactly the non-deterministic
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communication complexity of the function f , and log(bp(G f )) is a lower bound on

the deterministic communication complexity of f (see [Juk12]). In this context, we

show the following:

Theorem 5.1.4. For any Boolean function f , spd( f ) = bc(G f ) and uspd( f ) = bp(G f ).

Thus, if for a function family, the non-deterministic communication complexity

is Ω(n), then we will have spd( f ) = 2Ω(n). Thus, both spd(DISJ) and uspd(DISJ)

are 2Ω(n).

The rest of the Chapter is organized as follows. In Section 5.2 we give defi-

nition of projective dimension, make some crucial observations about the projec-

tive dimension assignment constructed from the branching program, introduce

some Boolean functions which we use in this chapter and also provide a refresher

on basic linear algebra needed for this chapter. In Section 5.3, we describe the

construction of Pudlák and Rödl and prove the properties of thus constructed

projective dimension assignment. We then study projective dimension of graphs

under operations like union and intersection in Section 5.4. In Section 5.5 we

study the restriction on projective dimension where the dimension of intersections

are restricted to be either 0 or 1, prove lower bounds for this variant and also

show a quadratic gap between this variant and projective dimension. In the next

section, Section 5.6 we show an exponential gap between projective dimension

and branching program size. Motivated by this gap example, we then define the

bitwise projective dimension in Section 5.7. We first show that bitwise projective

dimension is upper bounded by branching program size. Next we show that bit-

pdim is equal to branching program size up to polynomial factors in Section 5.8.

We then proceed to show a lower bound on bitpdim matching the best known

branching program lower bound in Section 5.9. We also give a candidate function
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for proving super-polynomial lower bounds for bitpdim in Section 5.10. We then

show that some restricted variants of projective dimension which are provably

not related to branching program size are indeed equivalent to well known graph

theoretic parameters in Section 5.11. We conclude the Chapter by discussing the

“natural”-ness of projective dimension based lower bound approach.

5.2 Projective dimension

Unless otherwise stated we work over the field F2. We remark that our arguments

do generalize to any finite field. All subspaces that we talk about in this work

are linear subspaces. Also ~0 and {0} denote the zero vector, and zero-dimensional

space respectively. For a subspace U ⊆ Fn, we call the ambient dimension of U as

n. We denote ei ∈ Fn as the ith standard basis vector with ith entry being 1 and rest

of the entires being zero.

We now define Projective dimension of a graph G over a fieldF, pdF(G) formally.

Definition 5.2.1. For a graph G(U,V,E), the projective dimension of G over a field

F, denoted by pdF(G) (we will drop F from the notation when it is F2), is defined

as the smallest d for which there is a vector space W of dimension d and a function

φmapping vertices in U,V to linear subspaces of W such that for all (u, v) ∈ U×V,

the pair 1 (u, v) ∈ E if and only if φ(u)∩φ(v) , {0}. A φwhich satisfy this condition

is said to realize the graph G(U,V,E).

For a Boolean function f : {0, 1}2n
→ {0, 1}, fix a partition of the input bits into

two parts of size n each, and consider the bipartite graph G f defined on vertex sets

U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if f (uv) = 1. A φ is said to realize
1It is worth noting that this does not put constraints on vertices u1,u2 in the same partitions, i.e.,

φ(u1) ∩ φ(u2) may or may not have non-trivial overlap.
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the function f if it realizes G f . Unless otherwise mentioned, the partition is the one

specified in the definition of the function.

We denote by bpsize( f ) the number of vertices (including accept and reject

nodes) in the optimal branching program computing f .

Theorem 5.2.2 (Pudlák-Rödl Theorem ( [PR92])). For a Boolean function f : {0, 1}n →

{0, 1} computed by a deterministic branching program of size s and F being any field and

G f be the graph induced from f by any partition of [2n] into two equal parts, pdF(G f ) ≤ s.

The proof of this result proceeds by producing a subspace assignment for

vertices of G f from a branching program computing f . We reproduce the proof of

the above theorem in our notation, in the next section, and derive the following

proposition. See Section 5.3 for the proofs.

Proposition 5.2.3. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} computed by a

deterministic branching program of size s, there is a collection of subspaces of Fs denoted

C = {Ua
i }i∈[n],a∈{0,1} and D = {Vb

j } j∈[n],b∈{0,1}, where we associate the subspace Ua
i with a bit

assignment xi = a and Vb
j with y j = b such that if we define the map φ assigning subspaces

from Fs to vertices of G f (U,V,E) where U = V = {0, 1}n, as φ(x) = span
1≤i≤n
{Uxi

i }, φ(y) =

span
1≤ j≤n
{Vy j

j }, for x ∈ U, y ∈ V then the following holds true. Let S = {ei−e j | i, j ∈ [s], i , j}.

1. for all (u, v) ∈ U × V, φ(u) ∩ φ(v) , {0} if and only if f (u, v) = 1.

2. for all (u, v) ∈ U × V, dim
(
φ(u) ∩ φ(v)

)
≤ 1.

3. For any W ∈ C ∪D, ∃S′ ⊆ S such that W = span {S′}.

We define the following family of functions and family of graphs based on

subspaces of a vector space and their intersections.
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Definition 5.2.4 (SId,Pd). LetF be a finite field. Denote by SId, the Boolean function

defined on Fd×d
× Fd×d

→ {0, 1} as for any A,B ∈ Fd×d SId(A,B) = 1 if and only if

rowspan(A) ∩ rowspan(B) , {0}. Note that the row span is over the field F (which,

in our case, is F2). Denote by Pd, the bipartite graph (U,V,E) where U and V are

the set of all subspaces of Fd. And for any (I, J) ∈ U × V, (I, J) ∈ E ⇐⇒ I ∩ J , {0}

We collect the definitions of Boolean functions which we deal with in this work.

For (x, y) ∈ {0, 1}n×{0, 1}n, IPn(x, y) =
∑n

i=1 xiyi mod 2, EQn(x, y) is 1 if∀i ∈ [n] xi = yi

and is 0 otherwise, INEQn(x, y) = ¬EQn(x, y) and DISJn(x, y) = 1 if∀i ∈ [n] xi∧yi = 0

and is 0 otherwise. Note that all the functions discussed so far have branching

programs of size O(n) computing them and hence have projective dimension O(n)

by Theorem 5.2.2.

Let m ∈ N and n = 2m log m. The Boolean function, Element Distinctness,

denoted EDn is defined on 2m blocks of 2 log m bits, x1, . . . , xm and y1, . . . , ym bits

and it evaluates to 1 if and only if all the xis and yis take distinct values when

interpreted as integers in [m2]. Let q be a power of prime congruent to 1 modulo

4. For x, y ∈ F∗q, the Paley function PALq
n(x, y) = 1 if x − y is a quadratic residue in

F∗q and 0 otherwise.

We observe for any induced subgraph H of G, if G is realized in a space of

dimension d, then H can also be realized in a space of dimension d. For any d ∈ N,

Pd appears as an induced subgraph of the bipartite realization of SId. Hence,

pd(SId) ≥ pd(Pd).
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5.2.1 Linear algebra basics

We need the following definition of Gaussian coefficients. For non-negative inte-

gers n, k and a prime power q,
[n

k

]
q is the expression, (qn

−1)(qn
−q)...(qn

−qk−1)
(qk−1)(qk−q)...(qk−qk−1) if n ≥ k, k ≥ 1,

0 if n < k, k ≥ 1, 1 if n ≥ 0, k = 0.

We recall some basic lemmas from linear algebra which we use later. Unless

otherwise mentioned, all our algebraic formulations are over finite fields (F of size

q). For vector spaces V1, V2 with dimensions k1, k2 respectively, thes direct sum

V1 ⊕V2 is the vector space formed by the column space of the matrix M =

B1 0

0 B2


where B1 is a k1 × k1 matrix whose column space forms V1, B2 is a k2 × k2 matrix

whose column space forms V2. We now state useful properties of direct sums as

proportions below. The proof of these propositions, Propositions 5.2.5 and 5.2.6

follows from an exercise problem in [Rom05]. But for sake of completeness we

include those proofs here.

Proposition 5.2.5. For an arbitrary field F, let U1, V1 be subspaces of Fk1 and U2,V2 be

subspaces of Fk2 . Then, (U1⊕U2)∩ (V1⊕V2) , {0} ⇐⇒ U1∩V1 , {0} or U2∩V2 , {0}

Proof. We will first prove that (U1 ⊕ U2) ∩ (V1 ⊕ V2) , {0} implies that there is

a vector in the intersection of U1,V1 or U2,V2. Let w be a non zero vector in

(U1 ⊕U2)∩ (V1 ⊕V2). Since vectors coming from U1 and V2 are orthogonal, it must

be that there is a vector common in U1 and V1 or U2 and V2.

Thus, it remains to prove that direct sum preserves intersections of U1,V1 and

U2,V2. Suppose there is a non zero vector w = (w1,w2, . . . ,wk1)
T in U1 ∩ V1, then

by definition of direct sum, U1 ⊕ U2 and V1 ⊕ V2 will have the common vector

(w1,w2, . . . ,wk1 , 0, . . . , 0)T
∈ Fk1+k2 . Similar is the case for a vector in U2 ∩ V2. �

94



Let U,V be two vector spaces. The vector space formed by Span ({uv> | u ∈ U, v ∈ V})

is called the tensor product of vector spaces U,V, and is denoted as U⊗V. Here u, v

are column vectors. A basic fact about tensor product that we need is the following

: (See [Hal74, Sec 25]). Let U be a vector space having basis u1,u2, . . .uk and V be

a vector space having basis v1, v2, . . . , v` over some field F then, vector space U⊗V

has a basis B = {uiv>j | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , `}}where u, v are column vectors.

Hence, for any two vector spaces U,V, dim(U ⊗ V) = dim(U) × dim(V).

Proposition 5.2.6. For an arbitrary field F, let U1, V1 be subspaces of Fk1 and U2,V2 be

subspaces ofFk2 . Then, (U1⊗U2)∩(V1⊗V2) , {0} ⇐⇒ U1∩V1 , {0} and U2∩V2 , {0}

Proof. For the reverse direction, suppose there is a non zero vector w1 in U1 ∩ V1

and a non zero vector w2 in U2 ∩ V2, then wT
1 w2 ∈ U1 ⊗ U2 and wT

1 w2 ∈ V1 ⊗ V2.

Hence w = wT
1 w2 ∈ (U1 ⊗U2) ∩ (V1 ⊗ V2).

For the forward direction, let w be a non zero vector in (U1 ⊗ U2) ∩ (V1 ⊗ V2).

Let {ei}i∈[k1] be the set of basis vectors for Fk1 and {ẽ j} j∈[k2] be the set of basis vectors

for Fk2 . Hence for some λi j, µi j ∈ F, w can be written as, w =
∑

i, j λi jeT
i ẽ j =

∑
i, j µi jeT

i ẽ j.

Hence,
∑

i, j(λi j − µi j)eT
i ẽ j = 0. By linear independence of tensor basis,

λi j = µi j ∀ (i, j) ∈ [k1] × [k2] (5.1)

Since w is non-zero, there exists i1, j1 with (i1, j1) ∈ [k1] × [k2] such that λi1 j1 , 0.

Applying equation 5.1, we get µi1 j1 , 0. Hence for (i1, j1), λi1 j1 , µi1 j1 are both non-

zero.

Hence it must be that (U1⊗U2) and (V1⊗V2) contain the vector eT
i1

ẽ j1 . So ei1 must

be present in U1 and V1 and e j1 must be present in U2 and V2 (if not, eT
i1

ẽ j1 would

not have appeared in the intersection). Hence U1 ∩V1 , {0} and U2 ∩V2 , {0}. �
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Let V be a finite dimensional vector space. For any U ⊆S V, V = U ⊕ U⊥.

Hence for any v ∈ V there exists a unique u ∈ U,w ∈ U⊥ such that v = u + w. A

projection map ΠU is a linear map defined as ΠU(v) = u where u is the compo-

nent of v in U. For any A,B ⊆S V with A ∩ B = {0}, let V = A + B. Then any

vector w ∈ V can be uniquely expressed as w = ΠA(w) + ΠB(w). It is easy to see

that, for any A,B ⊆S Fd, with A∩B = {0}, and any w ∈ Fd, ΠA+B(w) = ΠA(w)+ΠB(w).

5.3 Projective dimension and branching program size

In this section, we reproduce the proof of the projective dimension upper bound

in terms of branching program size. The proof is originally due to [PR92], but

we supply the details which are essential for the additional observations that we

make about the projective dimension assignment constructed from the branching

program.

A deterministic branching program is a directed acyclic graph G with distinct

start (V0), accept (V+) and reject (V−) nodes. Accept and reject nodes have fan-out

zero and are called sink nodes. Vertices of the DAG, except sink nodes are labeled

by variables and have two outgoing edges, one labeled 0 and the other labeled 1.

For a vertex labeled xi, if the input gives it a value b ∈ {0, 1}, then the edge labeled b

incident to xi is said to be closed and the other edge is open. A branching program is

said to accept an input x if and only if there is a path from V0 to V+ along the closed

edges in the DAG. A branching program is said to compute an f : {0, 1}n → {0, 1},

if for all x ∈ {0, 1}n, f (x) = 1 iff branching program accepts x.

Theorem 5.3.1. Let f : {0, 1}2n
→ {0, 1} be computed by a branching program B of size s.
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Figure 5.1: Pudlák-Rödl Theorem applied to a branching program computing
PARITY4

Let G f be the bipartite realization of f , with respect to any partition of [2n] into two equal

parts and F be any arbitrary field. Then, pdF(GF) ≤ s

Proof. It suffices to come up with a subspace assignment φ such that G f (P,Q,E)

has a projective representation in F. Associate u, v to vertices in P,Q respectively.

In other words, u corresponds to input variables {x1, x2, . . . , xn} and v corresponds

to {xn+1, . . . , x2n} (corresponding to the given partition). By the acceptance property

of branching program B, f (u ◦ v) = 1 ⇐⇒ ∃ a path from V0 to accept in B. Since

vertices in G f corresponds to strings in {0, 1}n, it suffices to give an assignment φ

such that

∃ a path from start to accept in B ⇐⇒ The bases of φ(u), φ(v) are linearly dependent

(5.2)

We first assign vectors to vertices of the branching program and then use it to come

up with a subspace assignment.
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Suppose there is a path from V0 to accept in B. A simple possible way to have

dependence is to have the sum of the vectors assigned to the edges of the path

telescoping to zero. This can be achieved in the following way.

1. ModifyB by adding a new start vertex labeled with a variable from the other
partition from which V0 got its label. For example, if V0 is labeled with any of
x1, x2, . . . , xn, the new vertex gets its label from {xn+1, . . . , x2n} and vice-versa.
Connect both outgoing edges labeled 0, 1 to V0.

2. Merge the accept node with the new start node. Let C be the resultant graph
which is no longer acyclic. Assign standard basis vectors to each vertex in C.

3. Assign to each edge (u, v) the vector eu − ev.

Now, the subspace assignment to a vertex v ∈ V(G f ) is to take the span of all

vectors assigned to closed edges on the input v. If there are no closed edges, we

assign the zero subspace. With the above modification, cycles in the graph would

lead to telescoping of difference vectors (along the cycle edges) to sum to zero.

Modification (1) is necessary as it is possible to have a cycle that does not contain

any vertex labeled with {xn+1, . . . , x2n}. Then φ(v) will just be the zero subspace and

φ(u) ∩ φ(v) will be trivial when there is a cycle. It is to avoid this that we add a

vertex labeled with a variable from the other partition.

To show thatφ is a valid subspace assignment, it remains to show that the right-

to-left implication of statement 5.2 holds. Suppose for (u, v) ∈ E(G f ), φ(u), φ(v) are

linearly dependent. Hence there exists a non trivial combination giving a zero

sum. ∑
e∈E(C)
e=(u,v)

λe(eu − ev) = 0, λe ∈ F ∀e ∈ E(C)

Let S be the non-empty set of edges such that λe , 0 and V(S) be its set of vertices.

Now for any vertex u ∈ V(S) there must be at least two edges containing u because

with just a single edge εu, which being a basis vector and summing up to zero,
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must have a zero coefficient which contradicts that fact that e ∈ S. This shows that

every vertex in S has a degree ≥ 2 (in the undirected sense). Hence it must have

an undirected cycle. �

Fig. 5.1 shows the transformations done to the branching program as per the

proof of Pudlák-Rödl Theorem and subspace assignment obtained for 00 and 01.

The subspace assignment for each of the vertices is listed in the table below.

x1x2 Assignment x3x4 Assignment
00 e2 − e3, e3 − e4, e7 − e8 00 e4 − e5, e8 − e9, e1 − e2, e5 − e6, e9 − e1

01 e2 − e3, e3 − e8, e7 − e4 01 e4 − e5, e8 − e9, e1 − e2, e5 − e1, e9 − e6

10 e2 − e7, e3 − e4, e7 − e8 10 e4 − e9, e8 − e5, e1 − e2, e5 − e6, e9 − e1

11 e2 − e7, e3 − e8, e7 − e4 11 e4 − e9, e8 − e5, e1 − e2, e5 − e1, e9 − e6

Table 5.1: Subspace assignment for PARITY4 given by proof of Pudlák-Rödl theo-
rem

We now prove the Proposition 5.2.3, establishing the properties of projective

dimension assignment constructed from the branching program.

Proof. Proof of Proposition 5.2.3 We reuse the notations introduced in the proof of

Theorem 5.2.2 which we have described in 5.3.1. If Hx denotes the set of edges

that are closed on an input a, then the subspace assignment φ(a) is the span of

vectors associated with edges of Hx. Denote by Hxi=ai , the subgraph consisting of

edges labeled xi = ai. Hence Ha can be written as span of vectors associated with

Hxi=ai . Hence φ(a) can be expressed as spann
i=1Ui where Ui = span(u,v)∈Hxi=ai

(eu − ev). A

similar argument shows that φ(y) also has such a decomposition. We now argue

the properties of φ.

Note that the first and third property directly follow from the construction. To

see the second property, observe that the branching program is deterministic and

hence there can be only one accepting path. Since we observed that the vectors in
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the accepting path contribute to the intersection space and since there is only one

such path, the dimension of the intersection spaces is bound to be 1. �

5.4 Projective dimension as property of graphs

In this section, we observe properties about projective dimension as a measure of

graphs and Boolean functions. We start by proving closure properties of projective

dimension under Boolean operations ∧ and ∨. The proof is based on the direct

sum and tensor product of vector spaces.

Lemma 5.4.1. Let F be an arbitrary field. For any two functions f1 : {0, 1}2n
→ {0, 1}, f2 :

{0, 1}2n
→ {0, 1}, pdF

(
f1 ∨ f2

)
≤ pdF

(
f1
)
+pdF

(
f2
)

and pdF
(

f1 ∧ f2
)
≤ pdF

(
f1
)
·pdF

(
f2
)

Proof. In this proof, for a Boolean f with bipartite representation G f (U,V,E) we

define the map φ to be from {0, 1}n × {0, 1} where φ(u, 0) denotes the subspace

assigned to u ∈ U and φ(v, 1) denotes the subspace assigned to v ∈ V of G f . Let f1

and f2 be of projective dimensions k1 and k2 realized by maps φ1 : {0, 1}n × {0, 1} →

Fk1 , φ2 : {0, 1}n × {0, 1} → Fk2 respectively.

• Fromφ1 andφ2 we construct a subspace assignmentφ : {0, 1}n×{0, 1} → Fk1+k2

which realizes f = f1 ∨ f2 thus proving the theorem.
The subspace assignment is : for u ∈ {0, 1}n, φ(u, 0) = φ1(u, 0) ⊕ φ2(u, 0).
Similarly for v ∈ {0, 1}n, φ(v, 1) = φ1(v, 1) ⊕ φ2(v, 1). Now, for u, v ∈ {0, 1}n,
if f (u, v) = 1 then it must be that f1(u, v) = 1 or f2(u, v) = 1. Thus, either
φ1(u, 0) ∩ φ1(v, 1) , {0} or φ2(u, 0) ∩ φ2(v, 1) , {0}. By Proposition 5.2.5, it
must be the case that (φ1(u, 0) ⊕ φ2(u, 0)) ∩ (φ1(v, 1) ⊕ φ2(v, 1)) , {0}. Hence
φ(u, 0) ∩ φ(v, 1) , {0}. The dimension of resultant space is k1 + k2. The case
f (u, v) = 0 is easy as both sup-spaces in the direct-sum are the trivial subspace
{0} and so is their direct sum.

• From φ1 and φ2 we construct a subspace assignment φ : {0, 1}n×{0, 1} → Fk1k2 ,
realizing f1 ∧ f2 thus proving the theorem. Consider the following projective
dimension assignment φ: for u ∈ {0, 1}n, φ(u, 0) = φ1(u, 0)⊗φ2(u, 0). Similarly
for v ∈ {0, 1}n, φ(v, 1) = φ1(v, 1) ⊗ φ2(v, 1). The proof is similar to the previous
case and applying Proposition 5.2.6, completes the proof.
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The ∨ part of the above lemma was also observed (without proof) in [PR94].

A natural question is whether we can improve any of the above bounds. In that

context, we make the following remarks: (1) the construction for ∨ is tight up to

constant factors, (2) we cannot expect a general relation connecting pdR( f ) and

pdR(¬ f ).

• We prove that the construction for ∨ is tight up to constant factors. Assume
that n is a multiple of 4. Consider the functions f (x1, . . . , x n

4
, x n

2 +1, . . . , x 3n
4

) and
g(x n

4 +1, . . . , x n
2
, x 3n

4 +1, . . . , xn) each of which performs inequality check on the
first n

4 and the second n
4 variables. It is easy to see that f ∨ g is the inequality

function on n
2 variables x1, . . . , x n

2
and the next n

2 variables x n
2 +1, . . . , xn. By

the fact that they are computed by n size branching programs and using
Theorem 5.2.2 (Pudlák-Rödl theorem) we get that pd( f ) ≤ n and pd(g) ≤ n.
Hence by Lemma 5.4.1, pd( f ∨ g) ≤ pd( f ) + pd(g) ≤ 2n. The lower bound
on the projective dimension of the inequality function comes from [PR92,
Theorem 4], giving pd( f ∨ g) ≥ ε.n2 for an absolute constant ε. This shows
that pd( f ∨ g) = Θ(n).

• A natural idea to improve the upper bound of pd( f1 ∧ f2) is to prove upper
bounds for pd(¬ f ) in terms of pd( f ). However, we remark that over R, it is
known [PR92] that pdR(INEQn) is Ω(n) while pdR(EQn) = 2. Hence we cannot
expect a general relation connecting pdR( f ) and pdR(¬ f ).

We now observe a characterization of bipartite graphs having projective di-

mension at most d over F. Let f : {0, 1}n × {0, 1}n → {0, 1}, and G f (X,Y,E) be its

bipartite realization. Let pd(G f ) = d.

Proposition 5.4.2. For any subspace assignment φ realizing G f , no two vertices from the

same partition whose neighborhoods are different can get the same subspace assignment.

Proof. Suppose there exists x, x′ ∈ S from the same partition, i.e., either X or Y,such

that φ(x) = φ(x′). Since N(x) , N(x′), without loss of generality, there exists

z ∈ N(x) \ N(x′). Now since φ(x) = φ(x′), x′ will be made adjacent to z by the
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assignment and hence φ is no longer a realization of G f since z should not have

been adjacent to x′. �

Lemma 5.4.3 (Characterization). Let G be a bipartite graph with no two vertices having

same neighborhood, pd(G) ≤ d if and only if G is an induced subgraph of Pd.

Proof. Suppose G appears as an induced subgraph of Pd. To argue, pd(G) ≤ d,

simply consider the assignment where the subspaces corresponding to the vertices

in Pd are assigned to the vertices of G.

On the other hand, suppose pd(G) ≤ d. Let U1, . . . ,UN and V1, . . . ,VN be

subspaces assigned to the vertices. Since the neighborhoods of the associated

vertices are different, by Proposition 5.4.2, no two subspaces assigned to these

vertices can be the same. Hence corresponding to each vertex in G, there is a unique

vertex in Pd which corresponds to the assignment. Now the subgraph induced by

the vertices corresponding to these subspaces inPd must be isomorphic to G as the

subspace assignment map for G preserves the edge non-edge relations in G. �

It follows that pd(Pd) ≤ d. Observe that, in any projective assignment, the

vertices with different neighborhoods should be assigned different subspaces. For

pd(Pd), all vertices from either partitions have distinct neighborhoods. The number

of subspaces of a vector space of dimension d−1 is strictly smaller than the number

of vertices in Pd. Thus, we conclude the following theorem.

Theorem 5.4.4. For any d ∈ N, pd(Pd) = pd(SId) = d.

For an N vertex graph G, the number of vertices of distinct neighborhood can

at most be N. Thus, the observation that we used to show the lower bound for

the pd(Pd) cannot be used to obtain more than a
√

log N (there are at most qd2

102



distinct subspaces of dimension d over Fq) lower bound for pd(G). Also, for many

functions, the number of vertices of distinct neighborhood can be smaller.

We observe that by incurring an additive factor of 2 log N, any graph G on

N vertices can be transformed into a graph G′ on 2N vertices such that all the

neighborhoods of vertices in one partition are distinct. Let f : {0, 1}2n
→ {0, 1}

be such that the neighborhoods of G f are not necessarily distinct. We consider

a new function f ′ whose bipartite realization will have two copies of G f namely

G1(A1,B1,E1) and G2(A2,B2,E2) where A1,A2,B1,B2 are disjoint and a matching

connecting vertices in A1 to B2 and A2 to B1 respectively. Since the matching

edge (i.e, the edge from (A2,B1) matching or (A1,B2) matching) associated with

every vertex is unique, the neighborhoods of all vertices are bound to be distinct.

Applying Lemma 5.4.1 and observing that matching (i.e, equality function) has

projective dimension at most n, pd( f ′) ≤ 2pd( f ) + 2n. This shows that to show

super-linear lower bounds on projective dimension for f where the neighborhoods

may not be distinct, it suffices to show a super-linear lower bound for f ′.

5.5 A restricted variant of projective dimension

Motivated by the proof of Theorem 5.2.2 we make the following definition.

Definition 5.5.1 (Projective Dimension with Intersection Dimension 1). A Boolean

function f : {0, 1}n×{0, 1}n → {0, 1}with the corresponding bipartite graph G(U,V,E)

is said to have projective dimension with intersection dimension 1 (denoted by

upd( f )) d over field F, if d is the smallest possible dimension for which there exists

a vector space K of dimension d over F with a map φ assigning subspaces of K to

U ∪ V such that
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• for all (u, v) ∈ U × V, φ(u) ∩ φ(v) , {0} if and only if (u, v) ∈ E.

• for all (u, v) ∈ U × V, dim
(
φ(u) ∩ φ(v)

)
≤ 1.

By the properties observed in Proposition 5.2.3,

Theorem 5.5.2. For a Boolean function f computed by a deterministic branching program

of size s, updF( f ) ≤ s for any field F.

Thus, it suffices to prove lower bounds for upd( f ) in order to obtain branching

program size lower bounds.

We now proceed to show lower bounds on upd.

Our approaches use the fact that the adjacency matrix of Pd has high rank.

Lemma 5.5.3. Let M be the bipartite adjacency matrix ofPd, then rank (M) ≥
[ d

d/2

]
q
≥ q

d2
4

Proof. For 0 ≤ i ≤ k ≤ d, and subspace I,K ⊆s Fd
q with dim(I) = i, dim(K) = k, define

matrix Wik over R as Wik(I,K) = 1 if I ∩ K = {0} and 0 otherwise. This matrix has

dimension
[d

i

]
q ×

[d
k

]
q.

Consider the submatrix Mi of M with rows and columns indexed by subspaces

of dimension exactly i. Observe that Wii = J −Mi where J is an all ones matrix

of appropriate order. These matrices are well-studied (see [FW86]). Closed form

expressions for eigenvalues are computed in [Del76, LW12] and the eigenvalues

are known to be non-zero. Hence for 0 ≤ i ≤ d/2 the matrix Wii has rank
[d

i

]
q.

Since Wii = J − Mi, rank (Mi) ≥ rank
(
Wii

)
− 1. This shows that rank (M) ≥

rank (Mi) =
[d

i

]
q for all i such that 2i ≤ d. Choosing i = d/2 gives rank (M) ≥[ d

d/2

]
q
− 1 ≥ q

d2
4 − 1. �
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We now present two approaches for showing lower bounds on upd( f ) - one

using intersection families of vector spaces and the other using rectangle arguments

on M f .

Lower Bound for upd(Pd) using intersecting families of vector spaces : To prove

a lower bound on upd(Pd) we define a matrix N from a projective assignment with

intersection dimension 1 for Pd, such that it is equal to (q − 1)M. Let D = upd(Pd).

We first show that rank (N) is at most 1 +
[D

1

]
q. Then by Lemma 5.5.3 we get that

rank (N) is at least q
d2
4 . Let G = {G1, . . . ,Gm}, H = {H1, . . . ,Hm} be the subspace

assignment with intersection dimension 1 realizing Pd with dimension D.

Lemma 5.5.4. For any polynomial p in qx of degree s, with matrix N of order |G| × |H|

defined as N[Gr,Ht] = p(dim(Gr ∩Ht)) with Gr ∈ G, Ht ∈ H , then rank (N) ≤
∑s

i=0
[D

i

]
q

Proof. This proof is inspired by the proof in [FG85] of a similar claim where a

non-bipartite version of this lemma is proved.

To begin with, note that p is a degree s polynomial in qx, and hence can be

written as a linear combination of polynomials pi =
[x

i

]
q, 0 ≤ i ≤ s. Let the linear

combination be given by p(x) =
∑s

i=0 αipi(x). For 0 ≤ i ≤ s define a matrix Ni

with rows and columns indexed respectively by G, H defined as Ni[Gr,Hs] =

pi(dimGr ∩Hs). By definition of Ni, N =
∑

i∈[s] αiNi.

To bound the rank of Ni’s we introduce the following families of inclusion

matrices. For any j ∈ [D], consider two matrices Γ j corresponding to G and ∆ j

corresponding to H defined as Γ j(G, I) = 1 if dim(I) = j,G ∈ G, I ⊆s G and 0

otherwise. ∆ j(H, I) = 1 if dim(I) = j,H ∈ H , I ⊆s H and 0 otherwise.

Note that the ranks of the these matrices are upper bounded by the number of

columns which is
[D

j

]
q
. We claim that for any i ∈ {0, 1, . . . , s}, rank (Ni) ≤

[D
i

]
q. This
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completes the proof since N =
∑

i∈[s] αiNi.

To prove the claim, let Fi denote the set of all i dimensional subspace of FD
q .

We show that Ni = Γi∆
T
i . Hence rank (Ni) ≤ min {rank (Γi) , rank (∆i)} ≤

[D
i

]
q. For

(Gr,Ht) ∈ G × H , Γi∆
T
i (Gr,Ht) =

∑
I∈Fi

Γi(Gr, I)∆T
i (I,Ht) =

∑
I∈Fi

Γi(Gr, I)∆i(Ht, I) =∑
I∈Fi

[I ⊆s Gr] ∧ [I ⊆s Ht] =
∑

I∈Fi
[I ⊆s Gr ∩Ht] =

[dim(Gr∩Ht)
i

]
q = Ni(Gr,Ht) �

We apply Lemma 5.5.4 on N defined via p(x) = qx
− 1 with s = 1, to get

qd2/4
≤

[ d
d/2

]
q
≤ 1 +

[D
1

]
q = 1 + (qD

− 1)/(q − 1). By definition, rank (N) = rank (M).

This gives that D = Ω(d2) and along with Theorem thm:subspace-graph-pd proves

Theorem 5.1.1.

Lower Bound for upd(Pd) from Rectangle Arguments : We now give an alternate

proof of Theorem 5.1.1 using combinatorial rectangle arguments.

Lemma 5.5.5. For f : {0, 1}n × {0, 1}n → {0, 1} with M f denoting the bipartite adjacency

matrix of G f , rankR(M f ) ≤ qO(updF( f )) where F is a finite field of size q.

Proof. Let φ be a subspace assignment realizing f of dimension d with intersection

dimension 1. Let S(v) for v ∈ Fd
q denote

{
(a, b) ∈ {0, 1}n × {0, 1}n | φ(a) ∩ φ(b) = span {v}

}
.

Also let Mv denote the matrix representation of S(v). That is, Mv(a, b) = 1 ⇐⇒

(a, b) ∈ S(v). Consider all 1 dimensional subspaces which appear as intersec-

tion space for some input (x, y). Fix a basis vector for each space and let T de-

note the collection of basis vectors of all the intersection spaces. Note that for

any (x, y) ∈ f −1(1), there is a unique v ∈ Fd
q (up to scalar multiples) such that

(x, y) ∈ S(v) for otherwise intersection dimension exceeds 1. Then M f =
∑

v∈T Mv.

Now, rank(M f ) ≤
∑

v∈T rank(Mv). Since rank(Mv) = 1, rank(M f ) ≤ |T|. The fact that

the number of 1 dimensional spaces in Fd can be at most qd
−1

q−1 completes the proof.

Note that the rank of M f can be over any field (we choose R). �
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We get an immediate corollary. Any function f , such that the adjacency matrix

of M f of the bipartite graph G f is of full rank 2n over some field must have

upd( f ) = Ω(n). There are several Boolean functions with this property, well-

studied in the context of communication complexity (see textbook [KN97]). Hence,

we have for f ∈
{
IPn,EQn, INEQn,DISJn,PALq

n

}
, updF( f ) is Ω(n) for any finite field

F.

For arguing about PALq
n, it can be observed that the graph is strongly regular

(as q ≡ 1 mod 4) and hence the adjacency matrix has full rank over R [Bol01].

Except for PALq
n, all the above functions have O(n) sized deterministic branching

programs computing them and hence the Pudlák-Rödl theorem (Theorem 5.2.2)

gives that upd for these functions (except PALq
n) are O(n) and hence the above lower

bound is indeed tight.

From Lemma 5.5.3, it follows that the function SId also has rank 2Ω(d2). To see

this, it suffices to observe that Pd appears as an induced subgraph in the bipartite

realization of SId. Thus, upd(SId) is Ω(d2). We proved in Theorem 5.4.4 that

pd(SId) = d. This establishes a quadratic gap between the two parameters. This

completes the alternate proof of Theorem 5.1.1.

Let D( f ) denote the deterministic communication complexity of the Boolean

function f . We observe that the rectangle argument used in the proof of Lemma 5.5.5

is similar to the matrix rank based lower bound arguments for communication

complexity. This yields the Proposition 5.5.6. If upd( f ) ≤ D, the assignment also

gives a partitioning of the 1s in M f into at most qD
−1

q−1 1-rectangles. However, it is

unclear whether this immediately gives a similar partition of 0s into 0-rectangles as

well. Notice that if D( f ) ≤ d, there are at most 2d monochromatic rectangles (count-

ing both 0-rectangles and 1-rectangles) that cover the entire matrix. However, our
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proof does not exploit this difference.

Proposition 5.5.6. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and a finite field

F, updF( f ) ≤ 2D( f ) and D( f ) ≤ (pdF( f ))2 log |F|

Proof. We give a proof of the first inequality. Any deterministic communication

protocol computing f of cost D( f ), partitions M f into k rectangles where k ≤ 2D( f )

rectangles. Define fi : {0, 1}n × {0, 1}n → {0, 1} for each rectangle Ri i ∈ [k], such

that fi(x, y) = 1 iff (x, y) ∈ Ri. Note that updF( fi) = 1 and f = ∨k
i=1 fi. For any

(x, y) ∈ {0, 1}n × {0, 1}n if f (x, y) = 1, there is exactly one i ∈ [k] where fi(x, y) = 1.

Hence for each j ∈ [k], j , i, the intersection vector corresponding to the edge

(x, y) in the assignment of f j is trivial. Hence the assignment obtained by applying

Lemma 5.4.1, to f1,∨ f2∨. . . fk will have the property that for any (x, y) with f (x, y) =

1, the intersection dimension is 1. Hence updF( f ) ≤ k ≤ 2D( f ). To prove the second

inequality, consider the protocol where Alice sends the subspace associated with

her input as a pdF( f ) × pdF( f ) matrix. �

Note that the first inequality is tight, up to constant factors in the exponent. To

see this, consider the function f : {0, 1}n × {0, 1}n → {0, 1} whose pdF( f ) = Ω(2n/2)

[PR92, Proposition 1] and note that D( f ) for any f is at most n. Tightness of the

second inequality is witnessed by SId since by Lemma 5.5.3 D(SId) = Ω(d2) while

pd(SId) = d.
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5.6 Exponential gap (non-explicit) between projective

dimension and BP Size

The restriction of intersection dimension being 1, although potentially useful for

lower bounds for branching program size, does not capture the branching program

size exactly. We start the section by demonstrating a function where the gap is

exponential.

We show the existence of a Boolean function f such that the size of the optimal

branching program computing it is very high but has a very small projective

assignment with intersection dimension 1 for any balanced partition of the input.

Proposition 5.6.1. (Implicit in Remark 1.30 of [Juk12]) There exist a function f : {0, 1}n×

{0, 1}n that requires size Ω( 2n

n ) for any branching program computing f but the upd( f ) ≤

O(n) for any balanced partitioning of the input into two parts.

Proof. Consider the function EQn. The graph GEQn
(U,V,E) with U = V = N is

a perfect matching where N = {0, 1}n. Relabel the vertices in U of this graph to

produce a family G of N! different labeled graphs. Let F be the set of Boolean

functions whose corresponding graph is in G. Let t be the smallest number such

that any function in F can be computed by a branching program of size at most t.

The number of branching programs of size ≤ t (bounded by O(tt) [Juk12]) forms an

upper bound on |F |. Thus, 2O(t log t)
≥ N!, and hence t is Ω

(
2n

n

)
. Hence there must

exist a function f ∈ F such that upd( f ) = upd(EQn) ≤ n but bpsize( f ) is Ω
(

2n

n

)
for

this partition.

We now argue the upper bound for upd( f ) for any balanced partition. Consider

the function fπ obtained by a permutation π ∈ SN on the U part of EQn graph.
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Consider a partition Π of [2n]. Let GΠ

EQn
,GΠ

fπ
be the corresponding bipartite graphs

(and EQΠ
n and f Π

π be the corresponding functions) with respect to the partition Π,

of EQn and fπ respectively.

We claim that upd(GΠ

EQn
) = upd(GΠ

fπ
).

By definition for any (u, v) ∈ {0, 1}n × {0, 1}n, fπ(u, v) = EQn(π−1(u), v). Also,

let (u′, v′) be the corresponding inputs according to the partition Π of [2n]. That

is f Π
π (u′, v′) = fπ(u, v) = EQn(π−1(u), v). Let x = π−1(u) and y = v. Observe that,

for (x, y) ∈ {0, 1}n × {0, 1}n there is a unique (x′, y′) corresponding to it. Hence

f Π
π (u′, v′) = EQn(π−1(u), v) = EQΠ

n (x′, y′). Thus, for any input (u′, v′) of f Π
π there

is unique input (x′, y′) of EQΠ
n obtained via the above procedure. Thus, from the

upd assignment for EQΠ
n we can get a upd assignment for f Π

π . Observing that

Theorem 5.5.2 holds for any partition Π of the input, we get a upd assignment for

EQΠ
n . �

The above proposition can be shown by adapting the counting argument pre-

sented in Remark 1.30 of [Juk12].

5.7 Bitwise projective dimension (BitPdim)

Motivated by the strong properties observed in Proposition 5.2.3, we make the

following definition.

Definition 5.7.1 (Bitwise Decomposable Projective Dimension). Let f be a Boolean

function on 2n bits and G f be its bipartite realization. The bipartite graph G f (X,Y,E)

is said to have bit projective dimension, bitpdim(G) ≤ d, if there exists a collection of

subspaces of Fd
2 denoted C = {Ua

i }i∈[n],a∈{0,1} andD = {Vb
j } j∈[n],b∈{0,1} where a projective
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assignment φ is obtained by associating subspace Ua
i with a bit assignment xi = a

and Vb
j with y j = b satisfying the conditions listed below.

1. for all (x, y) ∈ {0, 1}n × {0, 1}n, φ(x) = span
1≤i≤n
{Uxi

i }, φ(y) = span
1≤ j≤n
{Vy j

j } and f is

realized by φ.

2. Let S = {ei − e j | i, j ∈ [d], i , j}. For any W ∈ C ∪ D, ∃S′ ⊆ S such that
W = span {S′}.

3. for any S1,S2 ⊆ ([n] × {0, 1}) such that S1 ∩ S2 = φ, span
(i,a)∈S1

{Ua
i } ∩ span

( j,b)∈S2

{Ub
j } = {0}.

The same property must hold for subspaces inD.

We show that the new parameter bitwise decomposable projective dimension

(bitpdim) tightly characterizes the branching program size, up to constants in the

exponent.

Lemma 5.7.2. Suppose f : {0, 1}n × {0, 1}n → {0, 1} has deterministic branching program

of size s then bitpdim( f ) ≤ 6s.

Proof. The subspace assignment obtained by applying (Theorem 5.3.1) on an arbi-

trary branching program need not satisfy Property 3 because there can be a vertex

z that has two edges incident on it reading different variables from the same par-

tition. To avoid this, we subdivide every edge. We show that this transformation

is sufficient to get a bitpdim assignment. We now give a full proof. Let B be a

deterministic branching program computing f . Denote the first n variables of f as

x and the rest as y. We first apply the Pudlák-Rödl transformation on B to obtain a

branching program B′ computing f . We note that |V(B′)| = |V(B)|. Obtain B′′ from

B′ by subdividing every edge (u, v) checking a variable xi = b from partition x to

get three edges, (u,Vuv) checking xi = b and two edges between (Vuv, v) one which

checks y1 = 0 and another which checks y1 = 1 (see Figure 5.2).
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Figure 5.2: Edge modification

Clearly the transformation does not change the function computed by the

branching program. Since we are taking every edge of the branching program B′

and introducing two more edges, the total number of edges in B′ is 3|E(B′)|. Since

B′ is a deterministic branching program, every vertex v ∈ B′ has out degree at most

2 and at least 1 for every node except sink node. Hence |E(B′)| ≤ 2(|V(B′)|). Along

with |E(B′′)| = 3|E(B′)|, we get |E(B′′)| ≤ 6(|V(B′)|) = 6(|V(B)|). Now label every

vertex of B′′ with standard basis vectors as it is done in the Pudlák-Rödl Theorem

(Theorem 5.3.1). Let φ be projective assignment obtained from B′′ via Pudlák-Rödl

theorem. We claim that φ satisfies all the requirements of bitpdim( f ).

1. Since φ is obtained via Pudlák-Rödl it captures adjacencies of G f . Hence
property 1 holds. Property 2 is satisfied by Pudlák-Rödl assignment.

2. The standard basis vector eu corresponding to vertex u appears only in edges
incident on u in the Pudlák-Rödl assignment. For any edge (u, v) querying
a variable xi = b the other edges incident to v must query variables from
y. All the edges incident on u, except (u, v) must also query variables from
y. Otherwise, there is an edge (w,u) which queries a variable x j and our
transformation would have subdivided the edge. Hence eu, ev belong only to
Hxi=b amongst

{
Hxi=b

}
i∈[n],b∈{0,1}. This implies Property 3.

�
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5.8 BitPdim is equivalent to Branching program size

up to polynomial factors

We show that given a bitpdim assignment for a function f , we can construct a

branching program computing f .

Theorem 5.8.1 (Theorem 5.1.2 restated). There is an absolute constant c > 0 such that

if bitpdim( fn) ≤ d(n) for a function family { fn}n≥0 on 2n bits, then there is a deterministic

branching program of size (d(n))c computing it.

Proof. Consider the subspace associated with the variables C,D of the bitpdim

assignment as the advice string. These can be specified by a list of n basis matrices

each of size d2. Since d = bitpdim( f ) = poly(n), the advice string is poly(n) sized and

depends only on n.

We construct a deterministic branching program computing f as follows. On

input x, y, from the basis matrices in C,D, construct an undirected graph2 G∗ with

all standard basis vectors in C,D as vertices and add an edge between two vertices

u, v if eu − ev ∈ Uxi
i or eu − ev ∈ Vy j

j for i, j ∈ [n]. For input x, y, f (x, y) = 1 iff G∗ has a

cycle. To see this, let C = C1 ∪ C2 be a cycle in G∗ where C1 consists of edges from

basis matrices in C and C2 contain edges from basis matrices inD. Note that if one

of C1 or C2 is empty then there is a cycle consisting only of vectors from C which

implies a linear dependence among vectors in C. But this contradicts Property 3

of bitpdim assignment. Hence both C1 and C2 are non-empty.

Then it must be that
∑

(u,v)∈C1
eu − ev , 0,

∑
(w,z)∈C2

ew − ez , 0 and
∑

(u,v)∈C1
eu −

ev +
∑

(w,z)∈C2
ew − ez = 0. Hence

∑
(u,v)∈C1

eu − ev = −
∑

(w,z)∈C2
ew − ez. Hence we get

a vector in the intersection which gives f (x, y) = 1. Note that if f (x, y) = 1, then
2Note that this is not a deterministic branching program.
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clearly there is a non-zero intersection vector. If we express this vector in terms of

the basis, we get a cycle in G∗.

Hence, to check if f evaluates to 1, it suffices check if there is a cycle in G∗ which

is solvable in L using Reingold’s algorithm [Rei08]. The log-space algorithm can

also be converted to an equivalent branching program of size nc for a constant c.

We can improve the constant c to 3 + ε. We achieve this using the well known

random walk based RL algorithm for reachability [AKL+79], amplifying the error

and suitably fixing the random bits to achieve a non-uniform branching program

of size d3+ε.

The RL algorithm requires to store log d bits to remember the current vertex

while doing the random walk and another log d bits to store the next vertex in the

walk. It performs a walk of length 4d3 and answers correctly with probability of 1/2

[MU05]. Amplifying the error does not incur any extra space as the algorithm has a

one-sided error and it never errs when it accepts. This gives a probabilistic Turing

machine using 2 log d + 1 work space. By amplifying the success probability, we

can obtain a choice of random bits which works for all inputs of a fixed length. The

conversion of this machine to a branching program will incur storing of the head

index position of the work tape and input tape position which incur an additional

log log d + log d space. Hence overall space is 3 log d + log log d = (3 + ε) log d for

small fixed ε > 0, thus proving that c ≤ 3 + ε.

�
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5.9 Superlinear lower bound for BitPdim matching

the best BP size lower bound

From the results of the previous section, it follows that size lower bounds for

branching programs do imply lower bounds for bitwise decomposable projective

dimension as well. As mentioned earlier, the lower bounds that Theorem 5.1.2

can give for bitwise decomposable projective dimension are only known to be

sub-linear.

To prove super-linear lower bounds for bitwise decomposable projective di-

mension, we show that Nechiporuk’s method [Nec66] can be adapted to our linear

algebraic framework (thus proving Theorem 5.1.3). The overall idea is the follow-

ing: given a function f and a bitpdim assignment φ, consider the restriction of f

denoted fρ where ρ fixes all variables except the ones in Ti to 0 or 1 where Ti is

some subset of variables in the left partition. For different restrictions ρ, we are

guaranteed to get at least some number ci( f ) of different functions. We show that

for each restriction ρ, we can obtain an assignment from φ realizing fρ. Hence the

number of different bitpdim assignments for ρ restricted to Ti is at least the number

of sub functions of f which is at least ci( f ). Let di be the ambient dimension of the

assignment when restricted to Ti. By using the structure of bitpdim assignment,

we count the number of assignments possible and use this relation to get a lower

bound on di. Now repeating the argument with disjoint Ti, and by observing

that the subspaces associated with Tis are disjoint, we get a lower bound on d as

d =
∑

i di.

Theorem 5.9.1. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} on 2n variables, let

T1, . . . ,Tm be a partition of variables into m blocks of size ri on the first n variables. Let
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ci( f ) be the number of distinct sub functions of f when restricted to Ti, then bitpdim( f ) ≥∑m
i=1

log ci( f )
log(log ci( f ))

Proof. Let (x, y) denote the 2n input variables of f and ρ :
{
x1, . . . , xn, y1, . . . , yn

}
→

{0, 1, ∗} be a map that leaves only variables in Ti unfixed. Let φ be a bitpdim

assignment realizing f and let G f (X,Y,Z) denote the bipartite realization of f . Let

C =
{
Ua

i

}
i∈[n],a∈{0,1}

,D = {Vb
j } j∈[n],b∈{0,1} be the associated collection of subspaces. Let

ρ be a restriction that does not make fρ a constant and (x, y) ∈ {0, 1}n × {0, 1}n which

agrees with ρ. We use x, y to denote both variables as well as assignment. From

now on, we fix an i and a partition Ti.

Define L = span
i∈[n],ρ(i),∗

{Uρ(i)
i } and R = span

j∈[n]
{Vρ(n+ j)

j }. For any x ∈ {0, 1}n that agrees

with ρ on the first n bits, define Zx = span
j∈Ti

{Uxi
j }. Note that any (x, y) which agrees

with ρ has φ(x) = L + Zx and φ(y) = R. For any fρ1 . fρ2 , G fρ1
, G fρ2

. Hence the

number of bitpdim assignments is at least the number of different sub functions. We

need to give a bitpdim assignment for G fρ(V1,V2,E) where V1 =
{
x | x agrees with ρ

}
,

V2 =
{
y
}

where y = ρ[n+1,...,2n] and E =
{
(x, y)|x ∈ V1, y ∈ V2, f (x, y) = 1

}
. We use the

following property to come up with such an assignment.

Property 5.9.2. Let ρ be a restriction which does not make the function f constant and

which fixes all the variables y1, . . . , yn. For all such ρ and ∀x, y ∈ {0, 1}n which agrees

with ρ, any non-zero w ∈ φ(x) ∩ φ(y), where w = u + v with u ∈ L and v ∈ Zx must

satisfy v , ~0.

Proof. Suppose there exists an intersection vector w ∈ (L + Zx) ∩ R with w = u + v,

u ∈ L and v ∈ Zx and v = ~0. Since ~0 ∈ Zx̂ for any x̂, w = u + ~0 is in L + Zx̂ and R.

Thus, the function after restriction ρ is a constant. This contradicts the choice of

ρ. �
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The assignmentψρ for G fρ is defined as : ψρ(x) = Zx andψρ(y) = span
x∈V1

{ΠZx (R ∩ (L + Zx))}

Note that for (x, y) ∈ V1 × V2, fρ(x) = f (x, y). The following claim shows that ψρ

realize fρ.

Claim 5.9.3. For any (x, y) ∈ V1 × V2, f (x, y) = 1 if and only if ψρ(x) ∩ ψρ(y) , {0}.

Proof. For any (x, y) ∈ X × Y, φ(x) ∩ φ(y) , {0} if and only if f (x, y) = 1. Since

V1 ⊆ X and V2 ⊆ Y, it suffices to prove : ∀(x, y) ∈ V1 × V2, ψρ(x) ∩ ψρ(y) , {0} ⇐⇒

φ(x) ∩ φ(y) , {0}.

We first prove that ψρ(x) ∩ ψρ(y) , {0} implies φ(x) ∩ φ(y) , {0}. Let v be a

non-zero vector in ψρ(x) ∩ ψρ(y). By definition of ψρ(x), v ∈ Zx. By definition of

ψρ(y), there exists a non-empty J ⊆ V1 such that v =
∑

x̂∈J vx̂ where vx̂ ∈ Zx̂. Also for

every x̂ ∈ J, there exists a ux̂ ∈ L such that wx̂ = ux̂ + vx̂ and wx̂ ∈ R. Define u to be∑
x̂∈J ux̂. Since each ux̂ is in L, u is also in L. Hence w = u+v is in L+Zx. Substituting

u with
∑

x̂∈J ux̂ and v with
∑

x̂∈J vx̂ we get that w =
∑

x̂∈J ux̂ + vx̂ =
∑

x̂∈J wx̂. Since each

wx̂ ∈ R, w ∈ R. Hence w ∈ R ∩ (L + Zx) and w is non-zero as J is non-empty.

Now we prove that φ(x) ∩ φ(y) , {0} implies ψρ(x) ∩ ψρ(y) , {0}. Let w be

non zero vector in φ(x) ∩ φ(y) with w = u + v where u ∈ L and v ∈ Zx. By

Property 5.9.2 we have v , ~0. By definition v ∈ ψρ(y). Along with v ∈ Zx, we get

ψρ(x) ∩ ψρ(y) , {0}. �

Let Z = span
j∈Ti

{U0
j + U1

j }. We now prove that subspace assignment on the only

vertex in the right partition of Gρ which is span
x∈V1

{ΠZx(R)} is indeed ΠZ(R).

Claim 5.9.4. ΠZ(R) = span
x∈V1

{ΠZx(R)}

Proof. We show span
x∈V1

{ΠZx(R)} ⊆ ΠZ(R). Note that span
x∈V1

{ΠZx(R)} = span
x∈V1,w∈R

{ΠZx(w)}.

For an arbitrary x ∈ V1 and w ∈ R, let v = ΠZx(w). By definition of Zx and the fact
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that
{
Ub

i

}
i∈[n],b∈{0,1}

are disjoint, ΠZx(w) = +i∈[n],ρ(i)=∗ΠUxi
i

(w). As Z = span
j∈Ti

{U0
j + U1

j },

every ΠUxi
i

(w) ∈ ΠZ(R). Hence the span is also in ΠZ(R).

Now we show that ΠZ(R) ⊆ span
x∈V1

{ΠZx(R)}. Let Ti = {i1, . . . , ik}. For 1 ≤ j ≤ k

define x j to be x + e j where x ∈ {0, 1}n agrees with ρ and for any index i ∈ [n]

with ρ(i) = ∗, xi = 0 and e j
∈ {0, 1}n is 0 at every index other than i j. Note that

for any j1 , j2, j1, j2 ∈ Ti, Zx j1
∩ Zx j2 = {0} by Property 3 of Definition 5.7.1)

Also note that span
j∈Ti

{Zx j
} = span

j∈Ti

{Ux j

j } = Z. Hence, ΠZ(R) = span
j∈Ti

{ΠZxj (R)}. But

span
j∈Ti

{ΠZxj (R)} ⊆ span
x∈V1

{ΠZx(R)}. �

For any ρ, which fixes all variables outside Ti, Z is the same. And since there is

only one vertex on the right partition, for different ρ, ρ′, ΠZ(Rρ) = ΠZ(Rρ′) implies

ψρ = ψρ′ . Hence to count the number of different ψρ’s for different fρ’s it is enough

to count the number of different ΠZ(R). To do so, we claim the following property

on ΠZ(R).

Property 5.9.5. Let S = {eu − ev|eu − ev ∈ Z}. Then there exists a subset S′ of S such that

all the vectors in S′ are linearly independent and ΠZ(R) = span {S′}.

Proof. By the property of the bitpdim assignment, ∀i ∈ [n] and ∀b ∈ {0, 1}, Vb
i =

span
{
Fb

i

}
where Fb

i is a collection of difference of standard basis vectors. Recall that

R = span
j∈[n]
{Vρ(n+ j)

j }. Let F =
{
(eu − ev) | eu − ev ∈ Fρ(n+ j)

j , j ∈ [n]
}
. Since projections are

linear maps and the fact that Fρ(n+ j)
j spans Vρ(n+ j)

j we get that, ΠZ(R) = span
w∈F
{ΠZ(w)}.

Since Z is also a span of difference of standard basis vectors, ΠZ(eu − ev) is one

of ~0, eu − ew or ew − ev where ew is some standard basis vector in Z. Let S′′ =

∪eu−ev∈FΠZ(eu − ev). Hence S′′ ⊆ S. Clearly, span
eu−ev∈S′′

{eu − ev} = ΠZ(R). Choose S′ as a

linear independent subset of S′′. �

Property 5.9.5 along with the fact that ΠZ(R) is a subspace of Z, gives us that
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the number of different ΠZ(R) is upper bounded by number of different subsets S′

of S such that |S′| = di where di = dim(Z). As S′ is a set of difference of standard

basis vectors from Z, |S′| ≤
(di

2

)
. Thus, the number of different such S′ are at most∑di

k=0

(d2
i

k

)
= 2O(di log di).

Hence the number of restrictions ρ (that leaves Ti unfixed) and leading to

different fρ is at most 2O(di log di). But the number of such restrictions ρ is at least

ci( f ). Hence 2O(di log di) ≥ ci( f ) giving di = Ω
(

log ci( f )
log(log ci( f ))

)
. Using d =

∑
i di completes

the proof. �

Theorem 5.9.1 gives a super linear lower bound for Element Distinctness func-

tion. From a manuscript by Beame et.al, ([BGMS16], see also [Juk12], Chapter 1),

we have ci(EDn) ≥ 2n/2/n. Hence applying this count to Theorem 5.9.1, we get that

d ≥ Ω
(

n
log n ·

n
log n

)
= Ω

(
n2

(log n)2

)
.

Now we apply this to our context.

To get a lower bound using framework described above it is enough to count

the number of sub-functions of SId.

Lemma 5.9.6. For any i ∈ [d], there are 2Ω(d2) different restrictions ρ of SId which fixes all

entries other than ith row of the d × d matrix in the left partition.

Proof. Fix any i ∈ [d]. Let S be a subspace of Fd
2. Define ρS to be SId(A,B) where B

is a matrix whose rowspace is S. And A is the matrix whose all but ith row is 0’s

and ith row consists of variables (xi1 , . . . , xin). Thus, for any v ∈ {0, 1}d, rowspace of

A(x) is span {v}.

We claim that for any S,S′ ⊆S Fd
2 where S , S′, (SId)ρS

. (SId)ρ′S . By definition

(SId)ρS
≡ SId(A,B) and (SId)ρ′S ≡ SId(A,B′) where B and B′ are matrices whose
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rowspaces are S and S′ respectively. Since S , S′ there is at least one vector v ∈ Fd
2

such that it belongs to only one of S,S′. Without loss of generality let that subspace

be S. Then SId(A(v),B) = 1 as v ∈ S where as SId(A(v),B′) = 0 as v < S′. Hence

the number of different restrictions is at least number of different subspaces of Fd
2

which is 2Ω(d2). Hence the proof. �

This completes the proof of Theorem 5.1.3. This implies that for SId, the branch-

ing program size lower bound is Ω
(

d2

log d × d
)

= Ω
(

d3

log d

)
= Ω

(
n1.5

log n

)
where n = 2d2 is

the number of input bits of SId.

5.10 A candidate function for P vs L via BitPdim

Assuming C=L * L/poly, the function SId (a language which we will show is hard

for C=L under Turing reductions) cannot be computed by deterministic branching

programs of polynomial size.

Proposition 5.10.1. The function family {SId}d≥0 is hard for C=L via logspace Turing

reductions. Moreover, the negation of {SId}d≥0 is in LC=L (and hence in NC2).

Proof. We start with the following fact.

Fact 5.10.2 (Corollary 2.3 of [ABO99]). Fix an n ∈ N. There exists a logspace computable

function g : Fn×n
→ Fn×n such that for any matrix M over Fn×n, det(M) = 0 =⇒

rank(g(M)) = n and det(M) , 0 =⇒ rank(g(M)) = n − 1

Consider the language L =
{
(M1,M2) | rowspan(M1) ∩ rowspan(M2) , {0},M1,M2 ∈ Fd×d

}
.

The reduction is as follows. Given an M ∈ Fd×d, apply g (defined in Fact 5.10.2)

on M to get N, and define for 1 ≤ i ≤ d, Hi = (Mi
1,M

i
2) where Mi

1 is the matrix
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consisting of the ith row of N repeated n times and Mi
2 is the same as N with the

ith row replaced by all 0 vector. For each 1 ≤ i ≤ d, we make an oracle query to L

checking if Hi
∈ L and if all answers are no, reject otherwise accept.

We now argue the correctness of the reduction. Suppose det(M) is 0, then

N = g(M) (by Fact 5.10.2) must have full rank. Hence for all 1 ≤ i ≤ d, rowspan(Mi
1)

and rowspan(Mi
2) do not intersect. If det(M) , 0, then N = g(M) (by Fact 5.10.2)

must have a linearly dependent column and hence there is some i for which

rowspan(Mi
1) and rowspan(Mi

2) is non-zero. Also the overall reduction runs in

logspace as g is logspace computable.

The upper bound for L follows by observing that given two d × d matrices

M1 and M2, their individual ranks r1 and r2 can be computed in LC=L [ABO99].

Consider the matrix M of size d × 2d by adjoining M1 and M2. It follows that

the rowspace(M1) ∩ rowspace(M2) , φ if and only if rank (M) < r1 + r2. The latter

condition can also be tested using a query to a C=L oracle. �

5.11 Other variants of projective dimension and their

connection to graph theoretic parameters

In this section, we study two stringent variants of projective dimension for which

exponential lower bounds and exact characterizations can be derived. Although

these measure do not correspond to restrictions on branching programs, they

illuminate the essential nature of the general measure. We define the measures and

show their characterizations in terms of well-studied graph theoretic parameters.

Definition 5.11.1 (Standard Projective Dimension). A Boolean function f : {0, 1}n×
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{0, 1}n → {0, 1} with the corresponding bipartite graph G(U,V,E) is said to have

standard projective dimension (denoted by spd( f )) d over fieldF, if d is the smallest

possible dimension for which there exists a vector space K of dimension d over F

with a map φ assigning subspaces of K to U ∪ V such that

• for all (u, v) ∈ U × V, φ(u) ∩ φ(v) , {0} if and only if (u, v) ∈ E.

• u ∈ U ∪ V, φ(u) is spanned by a subset of standard basis vectors in K.

In addition to the above constraints, if the assignment satisfies the property

that for all (u, v) ∈ U × V, dim
(
φ(u) ∩ φ(v)

)
≤ 1, we say that the standard projective

dimension is with intersection dimension 1, denoted by uspd( f ). We make some easy

observations about the definition itself.

For N×N bipartite graph G with m edges, consider the assignment of standard

basis vectors to each of the edges and for any u ∈ U∪V, φ(u) is the span of the basis

vectors assigned to the edges incident on u. Moreover, the intersection dimension

in this case is 1. Hence for any G, spd(G) ≤ uspd(G) ≤ m.

Even though pd(G) ≤ spd(G), there are graphs for which the gap is exponential.

For example, consider the bipartite realization G of EQn with N = 2n. We know

pd(G) = Θ(log N) but spd(G) ≥ N since each of the vertices associated with the

matched edges cannot share any basis vector with vertices in other matched edges.

Hence dimension must be at least N. We show that standard projective dimension

of a bipartite G is the same as its biclique cover number.

Definition 5.11.2 (Biclique cover number). For a graph G, a collection of complete

bipartite graphs defined on V(G) is said to cover G if every edge in G is present in

some complete bipartite graph of the collection. The size of the smallest collection

of bipartite graphs which covers G is its biclique cover number (denoted by bc(G)).
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If in addition, we insist that bicliques must be edge-disjoint, the parameter is

known as biclique partition number denoted by bp(G).

Theorem 5.11.3 (Restatement of Theorem 5.1.4). For any Boolean function f , bc(G f ) =

spd(G f ) and uspd(G f ) = bp(G f ).

Proof. (spd( f ) ≤ bc(G f )) Let G = G f , t = bc(G) and A1. . . . ,At be a bipartite cover

for G. For a vertex v ∈ V(G), let Iv = {ei | v ∈ Ai}. We claim that {Iv}v∈V(G) is a valid

standard projective assignment. Suppose Iu ∩ Iv , ∅, then there exists an i such

that u, v ∈ Ai and (u, v) ∈ E(Ai). Hence (u, v) ∈ E(G). Also if (u, v) ∈ E(G), then ∃ i

s.t. (u, v) ∈ E(Ai). By definition of Iu, Iv, ei ∈ Iu ∩ Iv giving Iu ∩ Iv , ∅.

(bc(G f ) ≤ spd(G f )) Let G = G f , t = spd(G) and {Iu}u∈V(G) be the subsets assigned.

Consider Gi = {(u, v) | i ∈ Iu and i ∈ Iv} for i ∈ {1, . . . , t}. We claim that the collection

of Gi forms a valid bipartite cover of G. If (u, v) ∈ E(G), we have Iu ∩ Iv , ∅. Hence

there exists an i ∈ Iu ∩ Iv and (u, v) ∈ E(Gi). If (u, v) ∈ E(Gi) for some i, then i ∈ Iu

and i ∈ Iv implying Iu ∩ Iv , ∅. This gives that (u, v) ∈ E(G) from the definition of

standard assignment.

(bp(G f ) ≤ uspd(G f )) Let φ be the intersection dimension one standard as-

signment of ambient dimension d of f . For every ei ∈ Fd, define the set Ci ={
(x, y) | φ(x, y) = ei

}
. We claim that C = {Ci}i∈[d] is a bipartite partition of G f . Every

Ci thus defined is a biclique, because if φ(x, y) = ei then that implies ei ∈ φ(x)

and ei ∈ φ(y). Note that for every (x, y) ∈ G f , there exists a unique i ∈ [d] such

that φ(x, y) = ei. Hence any (x, y) ∈ G f belongs to exactly one of the sets Ci thus

implying that Ci’s are edge disjoint biclique covers. Note that any (x, y) < G f do

not belong to any of Ci’s as φ(x, y) = {0}.

(uspd(G f ) ≤ bp(G f )) Let C = {Ci}i∈[d] where d = bp(G f ) be a biclique partition
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cover. We give a standard assignment φ for G f defined as follows. For any x,

φ(x) = span
{
ei | ∃y, (x, y) ∈ Ci

}
. By definition φ is a standard assignment. We just

need to prove that (x, y) ∈ G f if and only φ(x, y) , {0} and dimφ(x, y) = 1. To

prove this we would once again employ the rectangle property of bicliques, that

is if (x, y′) ∈ Ci and (x′, y) ∈ Ci then so is (x, y). First we will argue that if there

an intersection then it is dimension 1. Recall that intersection of two standard

subspaces is a standard subspace. Suppose there exists (x, y) with dimφ(x, y) > 1.

Let e j, ek be any two standard intersection vectors inφ(x, y). By construction and the

rectangle property of bicliques, we get that (x, y) ∈ C j and (x, y) ∈ Ck contradicting

the disjoint cover property. Hence for any (x, y), dimφ(x, y) ≤ 1. If (x, y) < G f , then

there does not exist an i, (x, y) ∈ Ci. But if φ(x, y) = ei for some i ∈ [d], then that

implies by the rectangle property of bicliques that (x, y) ∈ Ci, a contradiction. �

5.12 Discussion - ”natural”-ness of projective dimen-

sion

We conclude this chapter with a discussion on the naturalness of this approach.

Since even circuit classes like NC1 and TC0 are believed to contain pseudo-random

functions, the natural proofs barrier applies to class L which contains all these

classes.

Recall that one of the properties a natural proof need to satisfy is the “con-

structiveness”. Constructiveness of a property P, says that given a truth table of

a Boolean function f , it can be decided whether the function satisfies the property

or not, in polynomial (in the size of the truth table) time. In case of a projective di-

mension based super polynomial lower bound, the property under consideration
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would be, given a Boolean function f is it true that pd( f ) = nω(1) ? We do not even

know how to check even for a weaker property like, is it true that pd( f ) = Ω(n2).

A naive algorithm to do this would have to try all possible linear sub-spaces of

Fn2

2 for all vertices of G f , the natural bipartite graph associated with f . Though

number of vertices in G f is bounded by truth table size, this kind of brute-force

enumeration, trying to find the correct subspace for each vertex, takes exponential

time in the number of vertices and logarithm in the number of linear subspaces

of Fn2

2 . The number of subspace of Fn2

2 is already exponential in n, hence the loga-

rithm of this quantity is polynomial in n. Thus, this naive strategy is exponential

in truth table size. Thus, we believe that the projective dimension based approach

is non-natural.

Regarding bitpdim, since we have proved that it is equivalent to branching

program size up to polynomial factors it is not hard to see that constructiveness

also doesn’t hold. This is because, the property that a Boolean function has bit-

pdim bitpdim( f ) = nω(1) is equivalent to the function not having polynomial sized

branching programs. There are no algorithms known to check if a function has no

polynomial sized branching programs, which does better than the naive algorithm,

which is to enumerate all polynomial sized branching programs and check if the

compute f one by one. This naive algorithm is not poly in the size of the truth

table of f . Hence we believe that bitpdim based approach is also non-natural.
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CHAPTER 6

Discussions and Open problems

We studied lower bounds against non-monotone circuits with a new measure

of non-monotonicity - namely the orientation of the functions computed at each

gate of the circuit. As the first step, we proved that the lower bound can be

obtained by modifying the Karchmer–Wigderson game. We studied the weight of

the orientation of the functions at internal gates as a parameter of the circuit, and

explored the usefulness of densely oriented gates. We also showed the connections

between negation limited circuits and orientation limited circuits. A main open

problem that arises from our work is to improve upon the weight restriction of the

orientation vector (Ω(
√

N
log N )) for which we can prove depth lower bounds.

Based on the techniques employed in the lower bound of [BCO+15a], the hard-

ness amplification of learning composition of functions based on a Fourier analytic

property Expected Bias ([FLS11], [O’D04]), we come up with information theoretic

noise model tailored for sparse orientation. We also outline a strategy which our

strategy can be executed to get a learning lower bound for Boolean functions

whose weight of orientation is limited, assuming Conjecture 4.3.8, provided one

can analyze noise stability of Boolean functions under the noise model where are

two noise operators operating on two parts of the input to the function. The two

open problems listed below, we believe, are important questions not just from the

point of the view of the lower bound, but are also interesting from the point of

view of Fourier analysis of Boolean functions. The first problem is to analyze the

expected bias of REC-3-MAJ : {0, 1}k → {0, 1} under the noise model we defined.



That is analyze,

ExpBiasγ(N1,δ1,δ2)(REC-3-MAJ) = Eρ∈Pk
N1 ,δ1 ,δ2

[
bias(REC-3-MAJρ)

]

where ρ ∈ Pk
N1,δ1,δ2

is defined to be,

ρ(i) =



? with probability 2δ1, i ∈ N1

0 with probability 1−2δ1
2 , i ∈ N1

1 with probability 1−2δ2
2 , i ∈ N1

? with probability 2δ2, i ∈ [k] \N1

0 with probability 1−2δ2
2 , i ∈ [k] \N1

1 with probability 1−2δ2
2 , i ∈ [k] \N1

The second problem is to analyze the expected bias of the Mossel O’Donnell

function [MO03] composed with majority. For c = 3, N1 = {(i, 1), (i, 2)}i∈[r], analyze

the expected bias of f3 : {0, 1}3r
→ {0, 1} under the noise model we defined. That is

analyze,

ExpBiasγ(N1,δ1,δ2)( f3) = Eρ∈Pk
N1 ,δ1 ,δ2

[
bias( f3ρ)

]
We studied variants of projective dimension of graphs with improved con-

nection to branching programs. We showed lower bounds for these measures

indicating the weakness and of each of the variants. A pictorial representation of

all parameters is shown in Fig. 6.1.

An immediate question that arises from our work is whether Ω(d2) lower bound

on upd(Pd) is tight. In this direction, since we have established a gap between

upd(Pd) and pd(Pd), it is natural to study how pd and upd behave under composi-
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pd(f)

upd(f) 2D(f)

bitpdim(f) bpsize(f)

bp(Gf )

uspd(f)

bc(Gf )

spd(f)

bitpdim(f)3+ε

D(f) – Deterministic Communication Complexity of f
bc(G) – Bipartite Cover number of G
bp(G) – Bipartite Partition number of G

Figure 6.1: Parameters considered in this work and their relations

tion of functions, in order to amplify this gap.

In another direction, we believe that the Ω(d2) lower bound on upd(Pd) is not

tight. It is natural to study composition of functions to improve this gap.

The subspace counting based lower bounds for bitpdim that we proved are tight

for functions like EDn. However, observe that under standard complexity theoretic

assumptions the bitpdim assignment for Pd is not tight. Hence it might be possible

to use the specific linear algebraic properties of Pd to improve the bitpdim lower

bound we obtained for Pd.
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CoRR, abs/1608.01932, 2016.

[BM06] D.C. Brock and G.E. Moore. Understanding Moore’s Law: Four Decades of Inno-
vation. Chemical Heritage Foundation, 2006.
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[RBG02] Lajos Rónyai, László Babai, and Murali K. Ganapathy. On the number of
zero-patterns of a sequence of polynomials. Journal of the AMS, 14:2001, 2002.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM,
55(4):17:1–17:24, September 2008.

[Rom05] Steven Roman. Advanced Linear Algebra, volume 135 of Graduate Texts in Math-
ematics. Springer Science & Business Media, 2005.

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer
and System Sciences, 55(1):24 – 35, 1997.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, February
1978.

[RW89] Ran Raz and Avi Wigderson. Probabilistic communication complexity of
boolean relations. In Proc. of the 30th FOCS, pages 562–567, 1989.

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear
depth. Journal of ACM, 39(3):736–744, July 1992.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, STOC ’87, pages 77–82, New York, NY, USA, 1987. ACM.

[Tal96] Michel Talagrand. How much are increasing sets positively correlated? Com-
binatorica, 16(2):243–258, 1996.
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